Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Int J Pharm ; 653: 123904, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38355074

RESUMO

An amine derivative of hyaluronic acid (HA) was crosslinked to obtain a 3D dried sponge. The sponge was subsequently rehydrated using secretome from human mesenchymal stromal cells (MSCs), resulting in the formation of a hydrogel. The release kinetics analysis demonstrated that the hydrogel effectively sustained secretome release, with 70% of the initially loaded wound-healing-associated cytokines being released over a 12-day period. Tuning the hydrogel properties through heparin crosslinking resulted in a biomaterial with a distinct mechanism of action. Specifically, the presence of heparin enhanced water uptake capacity of the hydrogel and increased its sensitivity to enzymatic degradation. Notably, the heparin crosslinking also led to a significant retention of cytokines within the hydrogel matrix. Overall, the secretome-rehydrated HA hydrogel holds promise as a versatile device for regenerative medicine applications: the non-heparinized hydrogel may function as a biomaterial with low reabsorption rates, sustaining the release of bioactive molecules contained in MSC secretome. In contrast, the heparinized hydrogel may serve as a depot of bioactive molecules with faster reabsorption rates. Given its patch-like characteristic, the HA-based hydrogel appears suitable as topical treatment for external organs, such as the skin.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/farmacologia , Ácido Hialurônico/farmacologia , Secretoma , Células-Tronco Mesenquimais/metabolismo , Heparina , Materiais Biocompatíveis/metabolismo , Citocinas/metabolismo
2.
Int J Pharm ; 645: 123409, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722496

RESUMO

Fluorescent sulfur- and nitrogen-doped carbon nanodots (CDs) are zero-dimensional nanoparticles that mediate ROS production in cancer cells, displaying inherent anticancer properties. Thus, they have been proposed as nanotheranostic tools useful in image-guided cancer therapy. Here, we try to show that cancerous cells (high PDE-5 expression) receiving sildenafil delivered by CDs-based nanostructures promote positive reinforcement of PDE-5-mediated cell death via the overexpression of genes involved in the production of ROS. We explored the regioselective Huisgen cycloaddition between azide-ß-cyclodextrin and CDs-alkyne to synthetize homogeneous nanostructures, named CDs-PEG4-ß-Cdx, consisting of CDs functionalized at the surface with ß-cyclodextrins capable of including high amount drugs such as sildenafil (>20 % w/w), and releasing them in a controlled manner. We investigated how CDs-PEG4-ß-Cdx bearing sildenafil enter cells, enhancing ROS production and cell death specifically in cancer cells overexpressing PDE-5. These nanoplatforms go beyond the bounds of EPR-based nanomedicines in which carriers are conceived as inert vehicles of toxic drugs. Our findings enable the development of clever anticancer nanoplatforms that synergistically combine nanomedicines that perturb the mitochondrial electron transport chain (ROS production) with PDE-5 inhibitors which trigger oxidative stress specifically in cancer cells regardless of their location.


Assuntos
Neoplasias , beta-Ciclodextrinas , Humanos , Citrato de Sildenafila , Espécies Reativas de Oxigênio/metabolismo , Carbono/química , beta-Ciclodextrinas/química , Enxofre/química
3.
Pharmaceutics ; 14(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432694

RESUMO

In this paper, we propose a rational design of a hybrid nanosystem capable of locally delivering a high amount of hydrophobic anticancer drugs (sorafenib or lenvatinib) and heat (hyperthermia) in a remote-controlled manner. We combined in a unique nanosystem the excellent NIR photothermal conversion of gold nanorods (AuNRs) with the ability of a specially designed galactosylated amphiphilic graft copolymer (PHEA-g-BIB-pButMA-g-PEG-GAL) able to recognize hepatic cells overexpressing the asialoglycoprotein receptor (ASGPR) on their membranes, thus giving rise to a smart composite nanosystem for the NIR-triggered chemo-phototherapy of hepatocarcinoma. In order to allow the internalization of AuNRs in the hydrophobic core of polymeric nanoparticles, AuNRs were coated with a thiolated fatty acid (12-mercaptododecanoic acid). The drug-loaded hybrid nanoparticles were prepared by the nanoprecipitation method, obtaining nanoparticles of about 200 nm and drug loadings of 9.0 and 5.4% w/w for sorafenib and lenvatinib, respectively. These multifunctional nanosystems have shown to convert NIR radiation into heat and release charged drugs in a remote-controlled manner. Then, the biocompatibility and synergistic effects of a chemo-phototherapy combination, as well the receptor-mediated internalization, were evaluated by an in vitro test on HepG2, HuH7, and NHDF. The results indicate that the proposed nanoparticles can be considered to be virtuous candidates for an efficient and selective dual-mode therapy of hepatocarcinoma.

4.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230779

RESUMO

An amphiphilic inulin-thiocholesterol conjugate (INU-Cys-TC) was strategically designed as a biodegradable core-shell nanocarrier of 7-ethyl-10-hydroxy-camptothecin (SN38) to enhance its solubility and stability in aqueous media, thus exploiting its brilliant anticancer effect. INU-Cys-TC was designed to have the hydrophilic inulin backbone (external shell) partially functionalized with hydrophobic thiocholesterol moieties (internal core) through a biodegradable disulfide bond due to cysteamine bridges. Thiocholesterol moieties impair redox-sensitive self-assembling abilities, yielding to nano-sized micelles in aqueous media capable of efficiently encapsulating a high amount of SN38 (DL = 8.1%). Micelles (INU-Cys-TC@SN38) were widely characterized, demonstrating an effective and stable delivery strategy to overcome the poor water-solubility of SN38. SN38-loaded micelles showed a gradual and prolonged release of SN38 over time, and a cell- and time-dependent cytotoxicity. In particular, we show that micelles efficiently deliver SN38 inside cell nuclei, and, compared to normal cell lines, they can also enter cancer cells by endo-lysosomes, where a complete degradation can occur releasing the drug payload. Overall, the proposed micelles appear potentially effective as nanomedicines for precision cancer therapies of colorectal and breast cancer, thus improving the SN38 therapeutic index and extending its use in a huge plethora of cancers.

5.
Biomater Adv ; 136: 212769, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929309

RESUMO

In this work, redox-sensitive polyurethane urea (PUU) based electrospun membranes have been exploited to chemically tether a pH-sensitive doxorubicin derivative achieved by linking a lipoyl hydrazide to the drug via a hydrazone linkage. First, the lipoyl-hydrazone-doxorubicin derivative labelled as LA-Hy-Doxo has been synthesized and characterized. Then, the molecule has been tethered, via a thiol-disulfide exchange reaction, to the redox-sensitive PUU (PolyCEGS) electrospun membrane. The redox-sensitive PolyCEGS PUU has been produced by using PCL-PEG-PCL polyol and glutathione-tetramethyl ester (GSSG-OMe)4 as a chain extender. The LA-Hy-Doxo tethered electrospun membrane has showed a dually controlled release triggered by acidic and reducing conditions, producing a significant cytotoxic effect in human breast cancer cell lines (MCF-7) which has validated the system for the post-surgical treatment of solid tumors to contrast recurrence.


Assuntos
Antineoplásicos , Poliuretanos , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Humanos , Hidrazonas , Micelas , Poliuretanos/química
6.
Int J Pharm ; 625: 122134, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36007850

RESUMO

The high incidence of cancer recurrences and the frequent occurrence of multidrug resistance often stem from a poorly selective and inefficient antineoplastic therapy, responsible for the onset of undesired side effects as well. A combination of minimal-invasive approaches could thus be a useful strategy to surmount these shortcomings, achieving a safe and solid cancer therapy. Herein, a multi-therapeutic nanotool was designed by merging the photothermal properties of gold nanorods (AuNRs) with the photodynamic activity of the photosensitizer verteporfin. AuNRs were coated with the natural materials lipoic acid and gellan gum (AuNRs_LA,GG) and subsequently loaded with verteporfin (AuNRs_LA,GG/Vert) producing stable colloidal dispersions. AuNRs_LA,GG/Vert were characterized in terms of stability, size and morphology. The hyperthermia exhibited after NIR excitation (810 nm) was also evaluated to highlight the effect on increasing the drug released profile in intra-tumoral mimicking media, as well as cytotoxicity on human colon cancer cell line (HCT116). In vivo studies on HCT116 murine xenograft models were carried out to prove the ability of AuNRs_LA,GG to arrest the tumor growth via NIR laser-triggered hyperthermia. Furthermore, the complete xenograft depletion was demonstrated upon AuNRs_LA,GG/Vert administration by combined photothermal (PTT) and photodynamic (PDT) effects.


Assuntos
Neoplasias do Colo , Hipertermia Induzida , Nanotubos , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Ouro , Humanos , Camundongos , Fototerapia , Verteporfina
7.
Biomacromolecules ; 23(8): 3439-3451, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35899612

RESUMO

Here, novel lipid-polymer hybrid nanoparticles (LPHNPs), targeted to lung macrophages, were realized as potential carriers for Roflumilast administration in the management of chronic obstructive pulmonary disease (COPD). To achieve this, Roflumilast-loaded fluorescent polymeric nanoparticles, based on a polyaspartamide-polycaprolactone graft copolymer, and lipid vesicles, made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-distearoyl-sn-glycero-phosphoethanolamine-N-(polyethylene glycol)-mannose, were properly combined using a two-step method, successfully obtaining Roflumilast-loaded hybrid fluorescent nanoparticles (Man-LPHFNPs@Roflumilast). These exhibit colloidal size and a negative ζ potential, 50 wt % phospholipids, and a core-shell-type morphology; they slowly release the entrapped drug in a simulated physiological fluid. The surface analysis also demonstrated their high surface PEG density, which confers mucus-penetrating properties. Man-LPHFNPs@Roflumilast show high cytocompatibility toward human bronchial epithelium cells and macrophages and are uptaken by the latter through an active mannose-mediated targeting process. To achieve an inhalable formulation, the nano-into-micro strategy was applied, encapsulating Man-LPHFNPs@Roflumilast in poly(vinyl alcohol)/leucine-based microparticles by spray-drying.


Assuntos
Nanopartículas , Polímeros , Aminopiridinas , Benzamidas , Ciclopropanos , Humanos , Macrófagos , Manose , Tamanho da Partícula , Fosfatidiletanolaminas , Polietilenoglicóis
8.
Polymers (Basel) ; 14(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35567015

RESUMO

Here, for the production of a bioink-based gellan gum, an amino derivative of this polysaccharide was mixed with a mono-functionalized aldehyde polyethyleneglycol in order to improve viscoelastic macroscopic properties and the potential processability by means of bioprinting techniques as confirmed by the printing tests. The dynamic Schiff base linkage between amino and aldehyde groups temporally modulates the rheological properties and allows a reduction of the applied pressure during extrusion followed by the recovery of gellan gum strength. Rheological properties, often related to printing resolution, were extensively investigated confirming pseudoplastic behavior and thermotropic and ionotropic responses. The success of bioprinting is related to different parameters. Among them, cell density must be carefully selected, and in order to quantify their role on printability, murine preostoblastic cells (MC3T3-E1) and human colon tumor cells (HCT-116) were chosen as cell line models. Here, we investigated the effect of their density on the bioink's rheological properties, showing a more significant difference between cell densities for MC3T3-E1 compared to HCT-116. The results suggest the necessity of not neglecting this aspect and carrying out preliminary studies to choose the best cell densities to have the maximum viability and consequently to set the printing parameters.

9.
ACS Appl Mater Interfaces ; 14(2): 2551-2563, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985246

RESUMO

Carbon nanodots (CDs) are a new class of carbon-based nanoparticles endowed with photoluminescence, high specific surface area, and good photothermal conversion, which have spearheaded many breakthroughs in medicine, especially in drug delivery and cancer theranostics. However, the tight control of their structural, optical, and biological properties and the synthesis scale-up have been very difficult so far. Here, we report for the first time an efficient protocol for the one-step synthesis of decagram-scale quantities of N,S-doped CDs with a narrow size distribution, along with a single nanostructure multicolor emission, high near-infrared (NIR) photothermal conversion efficiency, and selective reactive oxygen species (ROS) production in cancer cells. This allows achieving targeted and multimodal cytotoxic effects (i.e., photothermal and oxidative stresses) in cancer cells by applying biocompatible NIR laser sources that can be remotely controlled under the guidance of fluorescence imaging. Hence, our findings open up a range of possibilities for real-world biomedical applications, among which is cancer theranostics. In this work, indocyanine green is used as a bidentate SOx donor which has the ability to tune surface groups and emission bands of CDs obtained by solvothermal decomposition of citric acid and urea in N,N-dimethylformamide. The co-doping implies various surface states providing transitions in the visible region, thus eliciting a tunable multicolor emission from blue to red and excellent photothermal efficiency in the NIR region useful in bioimaging applications and image-guided anticancer phototherapy. The fluorescence self-tracking capability of SOx-CDs reveals that they can enter cancer cells more quickly than healthy cell lines and undergo a different intracellular fate after cell internalization. This could explain why sulfur doping entails pro-oxidative activities by triggering more ROS generation in cancer cells when compared to healthy cell lines. We also find that oxidative stress can be locally enhanced under the effects of a NIR laser at moderate power density (2.5 W cm-2). Overall, these findings suggest that SOx-CDs are endowed with inherent drug-independent cytotoxic effects toward cancer cells, which would be selectively enhanced by external NIR light irradiation and helpful in precision anticancer approaches. Also, this work opens a debate on the role of CD surface engineering in determining nanotoxicity as a function of cell metabolism, thus allowing a rational design of next-generation nanomaterials with targeted anticancer properties.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Carbono/farmacologia , Nanopartículas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/química , Carbono/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Raios Infravermelhos , Teste de Materiais , Estrutura Molecular , Imagem Óptica , Espécies Reativas de Oxigênio/metabolismo
10.
Carbohydr Polym ; 267: 118213, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119168

RESUMO

We propose a rational design of hyaluronic acid-dressed red-emissive carbon dots (CDs), with a well-structured hydrophobic core capable of locally delivering high amount doxorubicin (Doxo) (> 9% w/w) and heat (hyperthermia) in a light stimuli sensitive fashion. We combined in a unique micelle-like superstructure the peculiar optical properties of CDs (NIR photothermal conversion and red fluorescence) with the ability of hyaluronic acid (HA) shell of stabilizing nanomedicines in aqueous environment and recognizing cancer cells overexpressing CD44 receptors on their membranes, thus giving rise to smart theranostic agents useful in cancer imaging and NIR-triggered chemo-phototherapy of solid tumors. Hydrophobic CDs, named HCDs, were used as functional beads to self-assemble amphiphilic HA derivatives carrying polylactic acid side chains (HA-g-PLA), yielding to light-sensitive and biodegradable core-shell superstructures. We explored the biocompatibility and synergistic effects of chemo-phototherapy combination, together with fluorescence imaging, showing the huge potential of the proposed engineering strategy in improving efficacy. CHEMICAL COMPOUNDS.

11.
Molecules ; 26(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808586

RESUMO

Here, a novel strategy of formulating efficient polymeric carriers based on the already described INU-IMI-DETA for gene material whose structural, functional, and biological properties can be modulated and improved was successfully investigated. In particular, two novel derivatives of INU-IMI-DETA graft copolymer were synthesized by chemical functionalisation with epidermal growth factor (EGF) or polyethylenglycol (PEG), named INU-IMI-DETA-EGF and INU-IMI-DETA-PEG, respectively, in order to improve the performance of already described "inulin complex nanoaggregates" (ICONs). The latter were thus prepared by appropriately mixing the two copolymers, by varying each component from 0 to 100 wt% on the total mixture, named EP-ICONs. It was seen that the ability of the INU-IMI-DETA-EGF/INU-IMI-DETA-PEG polymeric mixture to complex siGL3 increases with the increase in the EGF-based component in the EP-ICONs and, for each sample, with the increase in the copolymer:siRNA weight ratio (R). On the other hand, the susceptibility of loaded siRNA towards RNase decreases with the increase in the pegylated component in the polymeric mixture. At all R values, the average size and the zeta potential values are suitable for escaping from the RES system and suitable for prolonged intravenous circulation. By means of biological characterisation, it was shown that MCF-7 cells are able to internalize mainly the siRNA-loaded into EGF-decorated complexes, with a significant difference from ICONs, confirming its targeting function. The targeting effect of EGF on EP-ICONs was further demonstrated by a competitive cell uptake study, i.e., after cell pre-treatment with EGF. Finally, it was shown that the complexes containing both EGF and PEG are capable of promoting the internalisation and therefore the transfection of siSUR, a siRNA acting against surviving mRNA, and to increase the sensitivity to an anticancer agent, such as doxorubicin.


Assuntos
Portadores de Fármacos , Inulina , Nanoestruturas , Neoplasias/dietoterapia , RNA Interferente Pequeno , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Inulina/química , Inulina/farmacocinética , Inulina/farmacologia , Células MCF-7 , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/farmacologia
12.
Materials (Basel) ; 13(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142826

RESUMO

Carbon nanodots (CDs) have recently attracted attention in the field of nanomedicine because of the biocompatibility, cost-effective nature, high specific surface, good near infrared (NIR) photothermal conversion into heat and tunable fluorescence properties, which have paved the way toward incorporating use of CDs into innovative anticancer theranostic platforms. However, a reliable synthesis of CDs with established and controlled physiochemical proprieties is precluded owing to the lack of full manipulation of thermodynamic parameters during the synthesis, thus limiting their use in real world medical applications. Herein, we developed a robust solvothermal protocol which allow fine controlling of temperature and pressure in order to obtain CDs with tunable properties. We obtained different CDs by modulating the operating pressure (from 8 to 18.5 bar) during the solvothermal decomposition of urea and citric acid in N,N-dimethylformamide at fixed composition. Atomic force microscopy (AFM), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis) and fluorescence spectroscopy were used to assess the role of pressure in influencing size, optical and surface properties of the obtained CDs. While preliminary biological and anticancer performance of CDs was established on the MDA-MB-231 cell line, used as triple negative breast cancer model. Our results indicate that pressure impinge on the formation of carbon nanoparticles under solvothermal conditions and impart desired optical, size distribution, surface functionalization and anticancer properties in a facile way. However, we have highlighted that a strategic surface engineering of these CDs is needed to limit the adsorption of corona proteins and also to increase the average surface diameter, avoiding a rapid renal clearance and improving their therapeutic efficacy in vivo.

13.
Cancers (Basel) ; 12(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113761

RESUMO

BACKGROUND: Engineered luminescent carbon nanodots (CDs) are appealing nanomaterials for cancer image-guided photothermal therapy combining near infrared (NIR)-triggered hyperthermia, imaging, and drug delivery in a single platform for efficient killing of cancer cells. This approach would allow eliciting synergistic regulated cell death (RCD) routes such as necroptosis, targeting breast cancer cells refractory to apoptosis, thus overcoming drug resistance. METHODS: We report the preparation of CDs bearing biotin as a targeting agent (CDs-PEG-BT), which are able to load high amounts of irinotecan (23.7%) to be released in a pulsed on-demand fashion. CDs-PEG-BT have narrow size distribution, stable red luminescence, and high photothermal conversion in the NIR region, allowing imaging of MDA-MB231 and MCF-7 cancer cells and killing them by photothermal and chemotherapeutic insults. RESULTS: Cellular uptake, viability profiles, and RCD gene expression analyses provided insights about the observed biocompatibility of CDs-PEG-BT, indicating that necroptosis can be induced on-demand after the photothermal activation. Besides, photothermal activation of drug-loaded CDs-PEG-BT implies both necroptosis and apoptosis by the TNFα and RIPK1 pathway. CONCLUSIONS: The controlled activation of necroptosis and apoptosis by combining phototherapy and on-demand release of irinotecan is the hallmark of efficient anticancer response in refractory breast cancer cell lines in view of precision medicine applications.

14.
Pharmaceutics ; 12(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113976

RESUMO

Theranostic systems have attracted considerable attention for their multifunctional approach to cancer. Among these, carbon nanodots (CDs) emerged as luminescent nanomaterials due to their exceptional chemical properties, synthetic ease, biocompatibility, and for their photothermal and fluorescent properties useful in cancer photothermal therapy. However, premature renal excretion due to the small size of these particles limits their biomedical application. To overcome these limitations, here, hybrid poly(lactic-co-glycolic acid) (PLGA-CDs) nanoparticles with suitable size distribution and stability have been developed. CDs were decisive in the preparation of polymeric nanoparticles, not only conferring them photothermal and fluorescent properties, needed in theranostics, but also having a strategic role in the stabilization of the system in aqueous media. In fact, CDs provide stable PLGA-based nanoparticles in aqueous media and sufficient cryoprotection in combination with 1% PVP. While PLGA nanoparticles required at least 5% of sucrose. Comparing nanosystems with different CDs content, it is also evident how these positively impinge on the loading and release of the drug, favoring high drug loading (~4.5%) and a sustained drug release over 48 h. The therapeutic and imaging potentials were finally confirmed through in vitro studies on a breast cancer cell line (MDA-MB-231) using fluorescence imaging and the MTS cell viability assay.

15.
Int J Pharm ; 589: 119879, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931844

RESUMO

Localized delivery of anticancer drugs is often the most useful therapeutic approach for the treatment of solid tumors. The use of injectable polymeric systems that maximize drug concentration in the proximal area of the tumor represents an extremely advantageous therapeutic strategy. Here, the development of an injectable in situ forming hydrogel was accomplished by exploiting the azo-type Michael reaction between an amine derivative of hyaluronic and vinylsulfone functionalized ß-cyclodextrins complexing doxorubicin. This injectable system can be easily prepared and administered with timelines compatible with normal operating room procedures, as demonstrated by rheological tests. In vitro experiments revealed that the peculiar physicochemical properties of the hydrogel guarantee a sustained release of the anticancer drug that blocks the growth of colorectal carcinoma micromasses cultured in 3D conditions. In vivo studies have confirmed that the medicated hydrogel can drastically reduce the tumor mass in the animal model without causing cytotoxic side effects in other areas of the body such as the heart. Overall, the proposed system has shown promising characteristics that make it an interesting useful device for localized chemotherapy of solid tumors.


Assuntos
Ciclodextrinas , Neoplasias , Animais , Doxorrubicina , Sistemas de Liberação de Medicamentos , Ácido Hialurônico , Hidrogéis , Neoplasias/tratamento farmacológico
16.
Int J Pharm ; 587: 119641, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32673768

RESUMO

Efforts in the field of anticancer therapy are increasingly focusing on the development of localized and selective treatments. Photothermal therapy (PTT) can lead to a spatially confined death of cancer cells, exploiting an increasing in temperature generated after UV-NIR irradiation of peculiar materials. Herein, a new actively targeted gold-based drug delivery system, named PHEA-LA-Fol-AuNRs/Iri, was explored for hyperthermia and chemotherapy colon cancer treatment. Gold nanorods were stabilized using a folate-derivative of α,ß-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA-LA-PEG-FA) as coating agent and then loaded with the antineoplastic drug irinotecan (Iri). The efficacy of empty and irinotecan-bearing systems was investigated in vitro on human colon cancer (HCT116) cell line, as well as in vivo, employing a xenograft mouse model of colon cancer. After laser treatment, both nanostructures tested induced a considerable deceleration in tumor growth overtime, achieving the total eradication of the cancer when the nanosystems produced were intratumorally administered. Biodistribution data showed that the polymer coated nanorods were able to preferentially accumulate in the tumor site. Considering the excellent stability in aqueous media, the capacity to reach the tumor site and, finally, the in vivo efficacy, PHEA-LA-Fol-AuNRs/Iri might be recommended as an effective tool in the chemotherapy and PTT of colon cancer.


Assuntos
Hipertermia Induzida , Nanotubos , Neoplasias , Animais , Linhagem Celular Tumoral , Ouro , Hipertermia , Camundongos , Neoplasias/terapia , Fototerapia , Polímeros , Distribuição Tecidual
17.
Int J Pharm ; 582: 119304, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32272167

RESUMO

In this paper the innovative approach of nano into micro dry powders (NiM) was applied to incorporate into mannitol or mannitol/cysteamine micromatrices ivacaftor-loaded nanoparticles for pulmonary delivery in CF. Nanoparticles composed by a mixture of two polyhydrohydroxyethtylaspartamide copolymers containing loaded with ivacaftor at 15.5% w/w were produced. The nanoparticles were incorporated into microparticles to obtain NiM that were fully characterized in terms of size, morphology, interactions with artificial Cf mucus (CF-AM) as well as for aerodynamic behaviour. Finally the activity of ivacaftor-containing NiM was evaluated by in vitro preliminary experiments. NiM at matrix composed by a mixture of mannitol:cysteamine showed greater ability to reduce CF-AM viscosity whereas that based on just mannitol showed better aerodynamic properties with a FPF of about 25%. All produced NiM showed very good cytocompatibility and the released ivacaftor was able to restore the chroride transport in vitro.


Assuntos
Aminofenóis/administração & dosagem , Agonistas dos Canais de Cloreto/administração & dosagem , Cisteamina/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Fibrose Cística/tratamento farmacológico , Expectorantes/administração & dosagem , Manitol/administração & dosagem , Nanopartículas , Peptídeos/química , Quinolonas/administração & dosagem , Administração por Inalação , Aminofenóis/química , Animais , Células Cultivadas , Agonistas dos Canais de Cloreto/química , Cisteamina/química , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Expectorantes/química , Manitol/química , Mutação , Pós , Quinolonas/química , Ratos Endogâmicos F344
18.
Pharmaceutics ; 12(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979001

RESUMO

Here, a novel protonable copolymer was realized for the production of polyplexes with a siRNA (inhibitor of STAT6 expression in asthma), with the aim of a pulmonary administration. The polycation was synthesized by derivatization of α,ß-poly(N-2-hydroxyethyl)d,l-aspartamide (PHEA) with 1,2-Bis(3-aminopropylamino)ethane (bAPAE) in proper conditions to obtain a PHEA-g-bAPAE graft copolymer with a derivatization degree in amine (DDbAPAE%) equal to 35 mol%. The copolymer showed a proper buffering behavior, i.e., ranging between pH 5 and 7.4, to potentially give the endosomal escape of the obtained polycations. In effect, an in vitro experiment demonstrated the effect on biological membranes of the copolymer on bronchial epithelial cells (16-HBE) strongly dependent on the pH of the medium, i.e., higher at pH 5. bAPAE-based copolymers were further obtained with an increasing pegylation degree, i.e., equal to 1.9, 2.7, and 4.4 mol%, respectively. All the obtained copolymers were able to complex siRNA at a N/P ratio that decreases as the pegylation degree increases. At the same time, the tendency of polyplexes to aggregate and the capability to interact with mucin also decreases as the pegylation in the copolymer increases. Gene silencing experiments on 16-HBE showed that these copolymers have a significant role in improving the intracellular transport of naked siRNA, where the presence of PEG does not seem to hinder the cellular uptake of polyplexes. The latter obtained at polymer/siRNA weight ratio (R) equal to 10 with PHEA-g-PEG(C)-g-bAPAE also seems to be not susceptible to the presence of mucin, avoiding the polyanionic exchange of complexed siRNA, thus showing adequate behavior to be used as an effective vector for siRNA.

19.
Int J Pharm ; 573: 118851, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31759107

RESUMO

Microfluidics is emerging as an innovative technique for the "on chip" fabrication of nanoparticles for drug delivery applications. Here, by using an amphiphilic derivative of hyaluronic acid as a starting macromolecule, nanohydrogels loaded with Imatinib were produced by the microfluidic procedure in order to develop an innovative therapeutic tool for the treatment of retinal neovascularization. Both cyRGDC functionalized and non-functionalized nanohydrogels were designed and fabricated by using the same technique. The targeting efficiency of the obtained nanosystems was studied in vitro on human retinal pigment epithelial cells (HRPEpiC) and human umbilical vein endothelial cells (HUVEC), the latter chosen as generic cellular model to assay inhibiting effect on cellular sprouting of Imatinib loaded nanohydrogels. The suitability of microfluidic approach for nanohydrogel production and drug loading was demonstrated. The cyRGDC functionalized nanosystems loaded with Imatinib, showed in vitro an enhanced ability to inhibit HUVEC organization into a capillary like structure.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos/instrumentação , Mesilato de Imatinib/administração & dosagem , Dispositivos Lab-On-A-Chip , Sobrevivência Celular/efeitos dos fármacos , Neovascularização de Coroide/tratamento farmacológico , Composição de Medicamentos/métodos , Estudos de Viabilidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Mesilato de Imatinib/farmacocinética , Nanoestruturas/química , Epitélio Pigmentado da Retina/irrigação sanguínea , Epitélio Pigmentado da Retina/citologia
20.
Mater Sci Eng C Mater Biol Appl ; 107: 110201, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761243

RESUMO

PEGylated graphene oxide (GO) has shown potential as NIR converting agent to produce local heat useful in breast cancer therapy, since its suitable photothermal conversion, high stability in physiological fluids, biocompatibility and huge specific surface. GO is an appealing nanomaterial for potential clinical applications combining drug delivery and photothermal therapy in a single nano-device capable of specifically targeting breast cancer cells. However, native GO sheets have large dimensions (0.5-5 µm) such that tumor accumulation after a systemic administration is usually precluded. Herein, we report a step-by-step synthesis of folic acid-functionalized PEGylated GO, henceforth named GO-PEG-Fol, with small size and narrow size distribution (∼30 ±â€¯5 nm), and the ability of efficiently converting NIR light into heat. GO-PEG-Fol consists of a nano-GO sheet, obtained by fragmentation of GO by means of non-equilibrium plasma etching, fully functionalized with folic acid-terminated PEG2000 chains through amidic coupling and azide-alkyne click cycloaddition, which we showed as active targeting agents to selectively recognize breast cancer cells such as MCF7 and MDA-MB-231. The GO-PEG-Fol incorporated a high amount of doxorubicin hydrochloride (Doxo) (>33%) and behaves as NIR-light-activated heater capable of triggering sudden Doxo delivery inside cancer cells and localized hyperthermia, thus provoking efficient breast cancer death. The cytotoxic effect was found to be selective for breast cancer cells, being the IC50 up to 12 times lower than that observed for healthy fibroblasts. This work established plasma etching as a cost-effective strategy to get functionalized nano-GO with a smart combination of properties such as small size, good photothermal efficiency and targeted cytotoxic effect, which make it a promising candidate as photothermal agent for the treatment of breast cancer.


Assuntos
Portadores de Fármacos/química , Ácido Fólico/química , Grafite/química , Nanoestruturas/química , Gases em Plasma/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos , Raios Infravermelhos , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA