Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38351927

RESUMO

Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally-fractionated PBSPT due to concerns of amplified uncertainties at the larger dose per fraction. NRG Oncology and Particle Therapy Cooperative Group (PTCOG) Thoracic Subcommittee surveyed US proton centers to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Amongst other points, the recommendations highlight the need for volumetric image guidance and multiple CT-based robust optimization and robustness tools to minimize further the impact of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38395086

RESUMO

Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally fractionated PBSPT because of concerns of amplified uncertainties at the larger dose per fraction. The NRG Oncology and Particle Therapy Cooperative Group Thoracic Subcommittee surveyed proton centers in the United States to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Among other points, the recommendations highlight the need for volumetric image guidance and multiple computed tomography-based robust optimization and robustness tools to minimize further the effect of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.

3.
Int J Part Ther ; 9(1): 71-82, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774489

RESUMO

Mechanism of Action: External beam, whether with photons or particles, remains as the most common type of radiation therapy. The main drawback is that radiation deposits dose in healthy tissue before reaching its target. Boron neutron capture therapy (BNCT) is based on the nuclear capture and fission reactions that occur when 10B is irradiated with low-energy (0.0025 eV) thermal neutrons. The resulting 10B(n,α)7Li capture reaction produces high linear energy transfer (LET) α particles, helium nuclei (4He), and recoiling lithium-7 (7Li) atoms. The short range (5-9 µm) of the α particles limits the destructive effects within the boron-containing cells. In theory, BNCT can selectively destroy malignant cells while sparing adjacent normal tissue at the cellular levels by delivering a single fraction of radiation with high LET particles. History: BNCT has been around for many decades. Early studies were promising for patients with malignant brain tumors, recurrent tumors of the head and neck, and cutaneous melanomas; however, there were certain limitations to its widespread adoption and use. Current Limitations and Prospects: Recently, BNCT re-emerged owing to several developments: (1) small footprint accelerator-based neutron sources; (2) high specificity third-generation boron carriers based on monoclonal antibodies, nanoparticles, among others; and (3) treatment planning software and patient positioning devices that optimize treatment delivery and consistency.

4.
Am J Clin Oncol ; 36(1): 97-101, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23334484

RESUMO

Total body irradiation (TBI) is a specialized radiotherapy technique. It is frequently used as a component of treatment plans involving hematopoietic stem cell transplant for a variety of disorders, most commonly hematologic malignancies. A variety of treatment delivery techniques, doses, and fractionation schemes can be utilized. A collaborative effort of the American College of Radiology and American Society for Radiation Oncology has produced a practice guideline for delivery of TBI. The guideline defines the qualifications and responsibilities of the involved personnel, including the radiation oncologist, physicist, dosimetrist, and radiation therapist. Review of the typical indications for TBI is presented, and the importance of integrating TBI into the multimodality treatment plan is discussed. Procedures and special considerations related to the simulation, treatment planning, treatment delivery, and quality assurance for patients treated with TBI are reviewed. This practice guideline can be part of ensuring quality and safety in a successful TBI program.


Assuntos
Radioterapia (Especialidade)/métodos , Radioterapia (Especialidade)/normas , Irradiação Corporal Total/métodos , Irradiação Corporal Total/normas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA