Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 113001, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590133

RESUMO

Tissue fluidification and collective motility are pivotal in regulating embryonic morphogenesis, wound healing, and tumor metastasis. These processes frequently require that each cell constituent of a tissue coordinates its migration activity and directed motion through the oriented extension of lamellipodium cell protrusions, promoted by RAC1 activity. While the upstream RAC1 regulators in individual migratory cells or leader cells during invasion or wound healing are well characterized, how RAC1 is controlled in follower cells remains unknown. Here, we identify a MYO6-DOCK7 axis essential for spatially restricting RAC1 activity in a planar polarized fashion in model tissue monolayers. The MYO6-DOCK7 axis specifically controls the extension of cryptic lamellipodia required to drive tissue fluidification and cooperative-mode motion in otherwise solid and static carcinoma cell collectives.


Assuntos
Mama , Pseudópodes , Cicatrização , Movimento (Física)
2.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747801

RESUMO

Tissue fluidification and collective motility are pivotal in regulating embryonic morphogenesis, wound healing and tumor metastasis. These processes frequently require that each cell constituent of a tissue coordinates its migration activity and directed motion through the oriented extension of lamellipodia cell protrusions, promoted by RAC1 activity. While the upstream RAC1 regulators in individual migratory cells or leader cells during invasion or wound healing are well characterized, how RAC1 is controlled in follower cells remains unknown. Here, we identify a novel MYO6-DOCK7 axis that is critical for spatially restriction of RAC1 activity in a planar polarized fashion in model tissue monolayers. The MYO6-DOCK7 axis specifically controls the extension of cryptic lamellipodia required to drive tissue fluidification and cooperative mode motion in otherwise solid and static carcinoma cell collectives. Highlights: Collective motion of jammed epithelia requires myosin VI activityThe MYO6-DOCK7 axis is critical to restrict the activity of RAC1 in a planar polarized fashionMYO6-DOCK7-RAC1 activation ensures long-range coordination of movements by promoting orientation and persistence of cryptic lamellipodiaMyosin VI overexpression is exploited by infiltrating breast cancer cells.

4.
Cancer Immunol Res ; 11(4): 405-420, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652202

RESUMO

Patients with colorectal liver metastasis (CLM) present with heterogenous clinical outcomes and improved classification is needed to ameliorate the therapeutic output. Macrophages (Mϕ) hold promise as prognostic classifiers and therapeutic targets. Here, stemming from a single-cell analysis of mononuclear phagocytes infiltrating human CLM, we identified two Mϕ markers associated with distinct populations with opposite clinical relevance. The invasive margin of CLM was enriched in pro-inflammatory monocyte-derived Mϕ (MoMϕ) expressing the monocytic marker SERPINB2, and a more differentiated population, tumor-associated Mϕ (TAM), expressing glycoprotein nonmetastatic melanoma protein B (GPNMB). SERPINB2+ MoMϕ had an early inflammatory profile, whereas GPNMB+ TAMs were enriched in pathways of matrix degradation, angiogenesis, and lipid metabolism and were found closer to the tumor margin, as confirmed by spatial transcriptomics on CLM specimens. In a cohort of patients, a high infiltration of SERPINB2+ cells independently associated with longer disease-free survival (DFS; P = 0.033), whereas a high density of GPNMB+ cells correlated with shorter DFS (P = 0.012) and overall survival (P = 0.002). Cell-cell interaction analysis defined opposing roles for MoMϕ and TAMs, suggesting that SERPINB2+ and GPNMB+ cells are discrete populations of Mϕ and may be exploited for further translation to an immune-based stratification tool. This study provides evidence of how multi-omics approaches can identify nonredundant, clinically relevant markers for further translation to immune-based patient stratification tools and therapeutic targets. GPNMB has been shown to set Mϕ in an immunosuppressive mode. Our high dimensional analyses provide further evidence that GPNMB is a negative prognostic indicator and a potential player in the protumor function of Mϕ populations.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Prognóstico , Macrófagos/metabolismo , Monócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Colorretais/metabolismo , Glicoproteínas de Membrana/metabolismo
5.
Nat Mater ; 22(5): 644-655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36581770

RESUMO

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Assuntos
Actinas , Neoplasias , DNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Citosol/metabolismo , Transdução de Sinais
7.
Soft Matter ; 17(13): 3550-3559, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33346771

RESUMO

The accurate quantification of cellular motility and of the structural changes occurring in multicellular aggregates is critical in describing and understanding key biological processes, such as wound repair, embryogenesis and cancer invasion. Current methods based on cell tracking or velocimetry either suffer from limited spatial resolution or are challenging and time-consuming, especially for three-dimensional (3D) cell assemblies. Here we propose a conceptually simple, robust and tracking-free approach for the quantification of the dynamical activity of cells via a two-step procedure. We first characterise the global features of the collective cell migration by registering the temporal stack of the acquired images. As a second step, a map of the local cell motility is obtained by performing a mean squared amplitude analysis of the intensity fluctuations occurring when two registered image frames acquired at different times are subtracted. We successfully apply our approach to cell monolayers undergoing a jamming transition, as well as to monolayers and 3D aggregates that exhibit a cooperative unjamming-via-flocking transition. Our approach is capable of disentangling very efficiently and of assessing accurately the global and local contributions to cell motility.


Assuntos
Imageamento Tridimensional , Movimento Celular , Movimento (Física)
8.
Nat Cell Biol ; 21(10): 1286-1299, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570834

RESUMO

Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.


Assuntos
Quinase 9 Dependente de Ciclina/genética , Reparo do DNA , DNA/genética , Subunidade 1 do Complexo Mediador/metabolismo , Transcrição Gênica , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Subunidade 1 do Complexo Mediador/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
9.
Nat Mater ; 18(11): 1252-1263, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31332337

RESUMO

During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effects with striking biophysical consequences. Specifically, unjamming in tumour spheroids is accompanied by persistent and coordinated rotations that progressively remodel the extracellular matrix, while simultaneously fluidizing cells at the periphery. This concurrent action results in collective invasion, supporting the concept that the endo-ERK1/2 pathway is a physicochemical switch to initiate collective invasion and dissemination of otherwise jammed carcinoma.


Assuntos
Diferenciação Celular , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/metabolismo , Humanos , Cinética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
10.
Soft Matter ; 14(18): 3471-3477, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29693694

RESUMO

Collective cell migration in dense tissues underlies important biological processes, such as embryonic development, wound healing and cancer invasion. While many aspects of single cell movements are now well established, the mechanisms leading to displacements of cohesive cell groups are still poorly understood. To elucidate the emergence of collective migration in mechanosensitive cells, we examine a self-propelled Voronoi (SPV) model of confluent tissues with an orientational feedback that aligns a cell's polarization with its local migration velocity. While shape and motility are known to regulate a density-independent liquid-solid transition in tissues, we find that aligning interactions facilitate collective motion and promote solidification, with transitions that can be predicted by extending statistical physics tools such as effective temperature to this far-from-equilibrium system. In addition to accounting for recent experimental observations obtained with epithelial monolayers, our model predicts structural and dynamical signatures of flocking, which may serve as gateway to a more quantitative characterization of collective motility.


Assuntos
Movimento Celular , Modelos Biológicos , Células Epiteliais/citologia
11.
Nat Mater ; 16(5): 587-596, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28135264

RESUMO

Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.


Assuntos
Endocitose , Epitélio/metabolismo , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Proteínas rab5 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA