Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(42): 7969-7983, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261268

RESUMO

Across species, including humans, elevated levels of brain estrogen receptor (ER) α are associated with enhanced cognitive aging, even in the absence of circulating estrogens. In rodents, short-term estrogen treatment, such as that commonly used in the menopausal transition, results in long-term increases in ERα levels in the hippocampus, leading to enhanced memory long after termination of estrogen treatment. However, mechanisms by which increased levels of brain ERα enhances cognitive aging remain unclear. Here we demonstrate in aging female rats that insulin-like growth factor-1 (IGF-1), which can activate ER via ligand-independent mechanisms, requires concomitant synthesis of brain-derived neuroestrogens to phosphorylate ERα via MAPK signaling, ultimately resulting in enhanced memory. In a rat model of menopause involving long-term ovarian hormone deprivation, hippocampal neuroestrogen activity decreases, altering IGF-1 activity and resulting in impaired memory. However, this process is reversed by short-term estradiol treatment. Forty days of estradiol exposure following ovariectomy results in maintenance of neuroestrogen levels that persist beyond the period of hormone treatment, allowing for continued interactions between IGF-1 and neuroestrogen signaling, elevated levels of hippocampal ERα, and ultimately enhanced memory. Collectively, results demonstrate that short-term estradiol use following loss of ovarian function has long-lasting effects on hippocampal function and memory by dynamically regulating cellular mechanisms that promote activity of ERα in the absence of circulating estrogens. Translational impacts of these findings suggest lasting cognitive benefits of short-term estrogen use near menopause and highlight the importance of hippocampal ERα, independent from the role of circulating estrogens, in regulating memory in aging females.SIGNIFICANCE STATEMENT Declines in ovarian hormones following menopause coincide with increased risk of cognitive decline. Because of potential health risks, current recommendations are that menopausal estrogen therapy be limited to a few years. Long-term consequences for the brain and memory of this short-term midlife estrogen therapy are unclear. Here, in a rodent model of menopause, we determined mechanisms by which short-term midlife estrogen exposure can enhance hippocampal function and memory with cognitive benefits and molecular changes enduring long after termination of estrogen exposure. Our model indicates long-lasting benefits of maintaining hippocampal estrogen receptor function in the absence of ongoing estrogen exposure and suggests potential strategies for combating age-related cognitive decline.


Assuntos
Envelhecimento Cognitivo , Estradiol , Humanos , Animais , Ratos , Feminino , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Fator de Crescimento Insulin-Like I , Receptores de Estrogênio/metabolismo , Ligantes , Estrogênios/farmacologia , Hipocampo/fisiologia , Menopausa , Encéfalo/fisiologia , Envelhecimento
2.
J Am Soc Nephrol ; 31(7): 1496-1508, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424001

RESUMO

BACKGROUND: Studies have suggested that estrogens may protect mice from AKI. Estrogen sulfotransferase (SULT1E1, or EST) plays an important role in estrogen homeostasis by sulfonating and deactivating estrogens, but studies on the role of SULT1E1 in AKI are lacking. METHODS: We used the renal ischemia-reperfusion model to investigate the role of SULT1E1 in AKI. We subjected wild-type mice, Sult1e1 knockout mice, and Sult1e1 knockout mice with liver-specific reconstitution of SULT1E1 expression to bilateral renal ischemia-reperfusion or sham surgery, either in the absence or presence of gonadectomy. We assessed relevant biochemical, histologic, and gene expression markers of kidney injury. We also used wild-type mice treated with the SULT1E1 inhibitor triclosan to determine the effect of pharmacologic inhibition of SULT1E1 on AKI. RESULTS: AKI induced the expression of Sult1e1 in a tissue-specific and sex-specific manner. It induced expression of Sult1e1 in the liver in both male and female mice, but Sult1e1 induction in the kidney occurred only in male mice. Genetic knockout or pharmacologic inhibition of Sult1e1 protected mice of both sexes from AKI, independent of the presence of sex hormones. Instead, a gene profiling analysis indicated that the renoprotective effect was associated with increased vitamin D receptor signaling. Liver-specific transgenic reconstitution of SULT1E1 in Sult1e1 knockout mice abolished the protection in male mice but not in female mice, indicating that Sult1e1's effect on AKI was also tissue-specific and sex-specific. CONCLUSIONS: SULT1E1 appears to have a novel function in the pathogenesis of AKI. Our findings suggest that inhibitors of SULT1E1 might have therapeutic utility in the clinical management of AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Fígado/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Injúria Renal Aguda/etiologia , Animais , Calcitriol/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Knockout , Orquiectomia , Ovariectomia , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Traumatismo por Reperfusão/complicações , Fatores Sexuais , Transdução de Sinais , Sulfotransferases/antagonistas & inibidores , Triclosan/farmacologia
3.
Endocrinology ; 161(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837219

RESUMO

Hemorrhagic shock (HS) is a potential life-threatening condition that may lead to injury to multiple organs, including the lung. The estrogen sulfotransferase (EST, or SULT1E1) is a conjugating enzyme that sulfonates and deactivates estrogens. In this report, we showed that the expression of Est was markedly induced in the liver but not in the lung of female mice subject to HS and resuscitation. Genetic ablation or pharmacological inhibition of Est effectively protected female mice from HS-induced acute lung injury (ALI), including interstitial edema, neutrophil mobilization and infiltration, and inflammation. The pulmonoprotective effect of Est ablation or inhibition was sex-specific, because the HS-induced ALI was not affected in male Est-/- mice. Mechanistically, the pulmonoprotective phenotype in female Est-/- mice was accompanied by increased lung and circulating levels of estrogens, attenuated pulmonary inflammation, and inhibition of neutrophil mobilization from the bone marrow and neutrophil infiltration to the lung, whereas the pulmonoprotective effect was abolished upon ovariectomy, suggesting that the protection was estrogen dependent. The pulmonoprotective effect of Est ablation was also tissue specific, as loss of Est had little effect on HS-induced liver injury. Moreover, transgenic reconstitution of human EST in the liver of global Est-/- mice abolished the pulmonoprotective effect, suggesting that it is the EST in the liver that sensitizes mice to HS-induced ALI. Taken together, our results revealed a sex- and tissue-specific role of EST in HS-induced ALI. Pharmacological inhibition of EST may represent an effective approach to manage HS-induced ALI.


Assuntos
Lesão Pulmonar Aguda/patologia , Choque Hemorrágico/complicações , Sulfotransferases/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/prevenção & controle , Animais , Estrogênios/metabolismo , Feminino , Fígado/enzimologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ressuscitação , Fatores Sexuais , Choque Hemorrágico/terapia
4.
Mol Cell Endocrinol ; 496: 110533, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31394142

RESUMO

Estrogens have many beneficial effects in the brain. Previously, we evaluated the effects of two models of menopause (surgical vs. transitional) on multiple monoaminergic endpoints in different regions of the adult rat brain in comparison with levels in gonadally intact rats. Here we evaluated the effects of estrogen receptor (ER) agonist treatments in these same two models of menopause. Neurochemical endpoints were evaluated in the hippocampus (HPC), frontal cortex (FCX), and striatum (STR) of adult ovariectomized (OVX) rats and in rats that underwent selective and gradual ovarian follicle depletion by daily injection of 4-vinylcyclohexene-diepoxide (VCD), after 1- and 6-weeks treatment with 17ß-estradiol (E2), or with selective ERα (PPT), ERß (DPN), or GPR30 (G-1) agonists. Endpoints included serotonin (5-HT) and 5-Hydroxyindoleacetic acid, dopamine (DA), 3,4-Dihydroxyphenylacetic acid and homovanillic acid, norepinephrine (NE) and epinephrine, as well as the amino acids tryptophan (TRP) and tyrosine (TYR). Significant differences between the models were detected. OVX rats were much more sensitive to ER agonist treatments than VCD-treated rats. Significant differences between brain regions also were detected. Within OVX rats, more agonist effects were detected in the HPC than in any other region. One interesting finding was the substantial decrease in TRP and TYR detected in the HPC and FCX in response to agonist treatments, particularly in OVX rats. This is on top of the substantial decreases in TRP and TYR previously reported one week after OVX or VCD-treatments in comparison with gonadally intact controls. Other interesting findings included increases in the levels of 5-HT, DA, and NE in the HPC of OVX rats treated with DPN, increases in DA detected in the FCX of OVX rats treated with any of the ER agonists, and increases in 5-HT and DA detected in the STR of OVX rats treated with E2. Many effects that were observed after 1-week of treatment were no longer observed after 6-weeks of treatment, demonstrating that effects were temporary despite continued agonist treatment. Collectively, the results demonstrate significant differences in the effects of ER agonists on monoaminergic endpoints in OVX vs. VCD-treated rats that also were brain region-specific and time dependent. The fact that agonist treatments had lesser effects in VCD treated rats than in OVX rats may help to explain reports of lesser effects of estrogen replacement on cognitive performance in women that have undergone transitional vs. surgical menopause.


Assuntos
Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Modelos Biológicos , Animais , Feminino , Humanos , Menopausa/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Psychoneuroendocrinology ; 102: 84-94, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30529907

RESUMO

Estrogens play important roles in regulating brain development, brain function, and behavior. Many studies have evaluated these effects using ovariectomized (OVX) rats or mice with different doses of estrogen replacement, assuming that estradiol levels in all regions of the brain are the same as levels achieved in the serum. It is well known, however, that the brain contains all the enzymes necessary to produce estrogens, and that estrogen levels in the brain are determined by both systemic and local production and are region-specific. The present study conducted a detailed analysis of the relationship between systemic levels of 17-ß-estradiol (E2) achieved by estrogen replacement and levels achieved in specific regions of the brain. Levels of E2 were measured in both brain and serum in OVX rats treated with different doses of estradiol benzoate (EB) using a novel and recently validated UPLC-MS/MS method. Results confirmed significantly higher levels of E2 in the brain than in serum in brain regions known to contain aromatase (ARO) activity, both in OVX controls and in rats treated with physiological doses of EB. Additional studies compared the level of E2 and testosterone (T) in the brain and serum between testosterone propionate (TP) treated OVX and male. This demonstrated higher levels of E2 in certain brain regions of males than in TP treated OVX females even though T levels in the brain and serum were similar between the two groups. Studies also demonstrated that the differences between serum and brain levels of E2 can be eliminated by letrozole (ARO inhibitor) treatment, which indicates that the differences are due to local ARO activity. Collectively the results provide a detailed analysis of brain region-specific E2 concentrations in OVX, E2-, and T-treated rats and demonstrate the degree to which these concentrations are ARO-dependent.


Assuntos
Encéfalo/metabolismo , Estradiol/análise , Estradiol/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Aromatase/metabolismo , Inibidores da Aromatase/metabolismo , Encéfalo/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cromatografia/métodos , Cromatografia Líquida/métodos , Estradiol/farmacologia , Terapia de Reposição de Estrogênios , Estrogênios , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Letrozol/farmacologia , Masculino , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos , Testosterona/farmacologia , Propionato de Testosterona
6.
Neuroscience ; 384: 203-213, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29852246

RESUMO

Cholinergic projections have been shown to interact with estrogens in ways that influence synaptic plasticity and cognitive performance. The mechanisms are not well understood. The goal of this study was to investigate whether cholinergic projections influence brain estrogen production by affecting aromatase (ARO), or influence estrogen signaling by affecting estrogen receptor expression. In the first experiment, ovariectomized rats received intraseptal injection of the selective immunotoxin 192IgG-saporin to destroy cholinergic inputs to the hippocampus. In the second experiment ovariectomized rats received daily intraperitoneal injections of the cholinesterase inhibitors donepezil or galantamine for 1 week. ARO activity and relative levels of ARO, ERα, ERß, and GPR30 mRNAs were quantified in the hippocampus, frontal cortex, amygdala and preoptic area. Results show that the cholinergic lesions effectively removed cholinergic inputs to the hippocampus, but had no significant effect on ARO or on relative levels of ER mRNAs. Likewise, injections of the cholinesterase inhibitors had no effect on ARO or ER expression in most regions of the brain. This suggests that effects of cholinergic inputs on synaptic plasticity and neuronal function are not mediated by effects on local estrogen production or ER expression. One exception was the amygdala where treating with galantamine was associated with a significant increase in ARO activity. The amygdala is a key structure involved in registering fear and anxiety. Hence this finding may be clinically relevant to elderly patients who are treated for memory impairment and who also struggle with fear and anxiety disorders.


Assuntos
Aromatase/metabolismo , Encéfalo/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Galantamina/farmacologia , Receptores de Estrogênio/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Ratos , Saporinas/toxicidade
7.
J Steroid Biochem Mol Biol ; 163: 113-20, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27113434

RESUMO

Aromatase (ARO) is a cytochrome P450 enzyme that accounts for local estrogen production in the brain. The goal of this study was to develop a microsomal based assay to sensitively and reliably detect the low levels of ARO activity in different brain regions. Enzyme activity was detected based on the conversion of testosterone to estradiol. Quantity of estradiol was measured using ultra performance liquid chromatography-mass spectrometry. Detection was linear over a range of 2.5-200pg/ml estradiol, and was reproducible with intra- and inter-assay coefficients of variation (CV) <15%. Estradiol production using isolated microsomes was linear with time up to 30min as well as linearly related to amount of microsome. Substrate concentration curves revealed enzymatic kinetics (hippocampus: Vmax and Km: 0.57pmol estradiol/h per mg microsome and 48.58nM; amygdala: Vmax and Km: 1.69pmol estradiol/h per mg microsome and 48.4nM; preoptic area: Vmax and Km: 0.96pmol estradiol/h per mg microsome and 44.31nM) with testosterone used at a saturating concentration of 400nM. Anastrozole treatment blocked ARO activity in hippocampal and ovarian microsomes, indicating that the assay is specific for ARO. Also, we showed that the distribution of the long form ARO mRNA (CYP19A1) in different regions of the brain is correlated with ARO activity, with highest levels in the amygdala, followed by preoptic area and hippocampus. In the frontal cortex, very little long form ARO mRNA, and little to no ARO activity, were detected. These findings demonstrate that the microsomal incubation (MIB) assay is a sensitive and reliable method for quantifying ARO activity in discrete brain regions.


Assuntos
Tonsila do Cerebelo/enzimologia , Aromatase/análise , Cromatografia Líquida de Alta Pressão/métodos , Hipocampo/enzimologia , Área Pré-Óptica/enzimologia , Tonsila do Cerebelo/química , Anastrozol , Animais , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Química Encefálica , Citocromo P-450 CYP1A1/metabolismo , Estradiol/metabolismo , Feminino , Hipocampo/química , Cinética , Limite de Detecção , Masculino , Microssomos/química , Nitrilas/farmacologia , Ovário/química , Ovário/enzimologia , Área Pré-Óptica/química , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Testosterona/metabolismo , Triazóis/farmacologia
8.
Mol Pharm ; 11(11): 4164-78, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25265550

RESUMO

Doxorubicin (DOX) is one of the most commonly used antineoplastic agents, but its clinical application is oftentimes coupled with severe side effects. Selective delivery of DOX to tumors via nanosized drug carrier represents an attractive approach to this problem. Previously, we developed a dual functional nanomicellar carrier, PEG5K-embelin2 (PEG5K-EB2), which was able to deliver paclitaxel (PTX) selectively to tumors and to achieve an enhanced therapeutic effect. In the present study, we examined the utility of PEG5K-EB2 to deliver DOX to tumors. In addition, folic acid (FA) was coupled to the surface of the PEG5K-EB2 micelles (FA-PEG5K-EB2) to further improve the selective targetability of the system. DOX-loaded PEG5K-EB2 micelles were uniformly spherical particles with a diameter of approximately 20 nm. Incorporation of FA had minimal effect on the size of the particles. The DOX loading efficiency was as high as 91.7% and 93.5% for PEG5K-EB2 and FA-PEG5K-EB2, respectively. DOX formulated in PEG5K-EB2 micelles (with or without FA decoration) demonstrated sustained kinetics of DOX release compared to free DOX. FA-PEG5K-EB2 significantly facilitated the intracellular uptake of DOX over free DOX and PEGylated liposomal DOX (Doxil) in breast cancer cells, 4T1.2, and drug resistant cells, NCI/ADR-RES. P-gp ATPase assay showed that PEG5K-EB2 significantly inhibited the function of the P-gp efflux pump. The maximum tolerated dose of DOX-loaded PEG5K-EB2 micelles was 15 mg/kg in mice, which was 1.5-fold greater than that for free DOX. Pharmacokinetics (PK) and biodistribution studies showed that both types of DOX-loaded micelles, especially FA-PEG5K-EB2, were able to significantly prolong the blood circulation time of DOX and facilitate its preferential accumulation at the tumor tissue. Finally, DOX/PEG5K-EB2 mixed micelles demonstrated significantly enhanced tumor growth inhibitory effect with minimal toxicity in comparison to free DOX and Doxil and the antitumor activity was further enhanced after the decoration by folic acid. Our data suggest that FA-PEG5K-EB2 micelles represent a promising DOX delivery system that warrants more study in the future.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Nanopartículas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Benzoquinonas/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sobrevivência Celular , Doxorrubicina/química , Doxorrubicina/farmacocinética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Polietilenoglicóis/química , Distribuição Tecidual , Células Tumorais Cultivadas
9.
Mol Cell Biol ; 34(9): 1682-94, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24567372

RESUMO

Estrogen sulfotransferase (EST/SULT1E1) is known to catalyze the sulfoconjugation and deactivation of estrogens. The goal of this study is to determine whether and how EST plays a role in human adipogenesis. By using human primary adipose-derived stem cells (ASCs) and whole-fat tissues from the abdominal subcutaneous fat of obese and nonobese subjects, we showed that the expression of EST was low in preadipocytes but increased upon differentiation. Overexpression and knockdown of EST in ASCs promoted and inhibited differentiation, respectively. The proadipogenic activity of EST in humans was opposite to the antiadipogenic effect of the same enzyme in rodents. Mechanistically, EST promoted adipogenesis by deactivating estrogens. The proadipogenic effect of EST can be recapitulated by using an estrogen receptor (ER) antagonist or ERα knockdown. In contrast, activation of ER in ASCs inhibited adipogenesis by decreasing the recruitment of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ) onto its target gene promoters, whereas ER antagonism increased the recruitment of PPARγ to its target gene promoters. Linear regression analysis revealed a positive correlation between the expression of EST and body mass index (BMI), as well as a negative correlation between ERα expression and BMI. We conclude that EST is a proadipogenic factor which may serve as a druggable target to inhibit the turnover and accumulation of adipocytes in obese patients.


Assuntos
Adipogenia , Sulfotransferases/genética , Sulfotransferases/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adiposidade , Adulto , Células Cultivadas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Sulfotransferases/antagonistas & inibidores , Regulação para Cima
10.
Endocrinology ; 154(5): 1845-53, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525220

RESUMO

Puberty in primates is timed by 2 hypothalamic events: during late infancy a decline in pulsatile GnRH release occurs, leading to a hypogonadotropic state that maintains quiescence of the prepubertal gonad; and in late juvenile development, pulsatile GnRH release is reactivated and puberty initiated, a phase of development that is dependent on kisspeptin signaling. In the present study, we determined whether the arrest of GnRH pulsatility in infancy was associated with a change in kisspeptin expression in the mediobasal hypothalamus (MBH). Kisspeptin was determined using immunohistochemistry in coronal hypothalamic sections from agonadal male rhesus monkeys during early infancy when GnRH release as reflected by circulating LH concentrations was robust and compared with that in juveniles in which GnRH pulsatility was arrested. The distribution of immunopositive kisspeptin neurons in the arcuate nucleus of the MBH of infants was similar to that previously reported for adults. Kisspeptin cell body number was greater in infants compared with juveniles, and at the middle to posterior level of the arcuate nucleus, this developmental difference was statistically significant. Neurokinin B in the MBH exhibited a similar distribution to that of kisspeptin and was colocalized with kisspeptin in approximately 60% of kisspeptin perikarya at both developmental stages. Intensity of GnRH fiber staining in the median eminence was robust at both stages. These findings indicate that the switch that shuts off pulsatile GnRH release during infancy and that guarantees the subsequent quiescence of the prepubertal gonad involves a reduction in a stimulatory kisspeptin tone to the GnRH neuronal network.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/sangue , Neurônios/metabolismo , Maturidade Sexual/fisiologia , Animais , Animais Recém-Nascidos/sangue , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Regulação para Baixo , Hormônio Liberador de Gonadotropina/sangue , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Hormônio Luteinizante/análise , Macaca mulatta , Masculino , Orquiectomia , Concentração Osmolar , Fluxo Pulsátil
11.
Int J Nanomedicine ; 7: 4473-85, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927761

RESUMO

BACKGROUND: The sigma-2 receptor is an attractive target for tumor imaging and targeted therapy because it is overexpressed in multiple types of solid tumors, including prostate cancer, breast cancer, and lung cancer. SV119 is a synthetic small molecule that binds to sigma-2 receptors with high affinity and specificity. This study investigates the utility of SV119 in mediating the selective targeting of liposomal vectors in various types of cancer cells. METHODS: SV119 was covalently linked with polyethylene glycol-dioleyl amido aspartic acid conjugate (PEG-DOA) to generate a novel functional lipid, SV119-PEG-DOA. This lipid was utilized for the preparation of targeted liposomes to enhance their uptake by cancer cells. Liposomes with various SV119 densities (0, 1, 3, and 5 mole%) were prepared and their cellular uptake was investigated in several tumor cell lines. In addition, doxorubicin (DOX) was loaded into the targeted and unmodified liposomes, and the cytotoxic effect on the DU-145 cells was evaluated by MTT assay. RESULTS: Liposomes with or without SV119-PEG-DOA both have a mean diameter of approximately 90 nm and a neutral charge. The incorporation of SV119-PEG-DOA significantly increased the cellular uptake of liposomes by the DU-145, PC-3, A549, 201T, and MCF-7 tumor cells, which was shown by fluorescence microscopy and the quantitative measurement of fluorescence intensity. In contrast, the incorporation of SV119 did not increase the uptake of liposomes by the normal BEAS-2B cells. In a time course study, the uptake of SV119 liposomes by DU-145 cells was also significantly higher at each time point compared to the unmodified liposomes. Furthermore, the DOX-loaded SV119 liposomes showed significantly higher cytotoxicity to DU-145 cells compared to the DOX-loaded unmodified liposomes. CONCLUSION: SV119 liposomes were developed for targeted drug delivery to cancer cells. The targeting efficiency and specificity of SV119 liposomes to cancer cells was demonstrated in vitro. The results of this study suggest that SV119-modified liposomes might be a promising drug carrier for tumor-targeted delivery.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacocinética , Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacocinética , Carbamatos/química , Carbamatos/farmacocinética , Lipossomos/química , Lipossomos/farmacocinética , Receptores sigma/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Humanos , Ligantes , Lipossomos/farmacologia , Tamanho da Partícula , Polietilenoglicóis/química , Rodaminas
13.
Endocr Rev ; 31(2): 224-53, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20019127

RESUMO

The pros and cons of estrogen therapy for use in postmenopausal women continue to be a major topic of debate in women's health. Much of this debate focuses on the potential benefits vs. harm of estrogen therapy on the brain and the risks for cognitive impairment associated with aging and Alzheimer's disease. Many animal and human studies suggest that estrogens can have significant beneficial effects on brain aging and cognition and reduce the risk of Alzheimer's-related dementia; however, others disagree. Important discoveries have been made, and hypotheses have emerged that may explain some of the inconsistencies. This review focuses on the cholinergic hypothesis, specifically on evidence that beneficial effects of estrogens on brain aging and cognition are related to interactions with cholinergic projections emanating from the basal forebrain. These cholinergic projections play an important role in learning and attentional processes, and their function is known to decline with advanced age and in association with Alzheimer's disease. Evidence suggests that many of the effects of estrogens on neuronal plasticity and function and cognitive performance are related to or rely upon interactions with these cholinergic projections; however, studies also suggest that the effectiveness of estrogen therapy decreases with age and time after loss of ovarian function. We propose a model in which deficits in basal forebrain cholinergic function contribute to age-related changes in the response to estrogen therapy. Based on this model, we propose that cholinergic-enhancing drugs, used in combination with an appropriate estrogen-containing drug regimen, may be a viable therapeutic strategy for use in older postmenopausal women with early evidence of mild cognitive decline.


Assuntos
Colinérgicos/uso terapêutico , Cognição/fisiologia , Estrogênios/fisiologia , Modelos Neurológicos , Prosencéfalo/fisiologia , Envelhecimento/fisiologia , Animais , Terapia de Reposição de Estrogênios , Estrogênios/uso terapêutico , Feminino , Humanos
14.
Endocrinology ; 149(9): 4387-95, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18511511

RESUMO

Kisspeptin is recognized to play a critical role in eliciting the pubertal resurgence of pulsatile GnRH release, the proximal trigger of puberty in higher primates. Expression of the kisspeptin receptor (GPR54) by GnRH neurons indicates a direct action of kisspeptin on the GnRH neuronal network. The purpose of the present study was to examine the distribution of kisspeptin cell bodies in the monkey hypothalamus and to assess the structural basis for the stimulatory action of kisspeptin on the GnRH neuronal network. Three castrated male rhesus monkeys, 39-51 months of age, were deeply anesthetized and their brains perfused transcardially with 4% paraformaldehyde in PBS. Serial 25-microm coronal sections throughout the hypothalamus were prepared, and immunopositive neurons identified using a cocktail of specific primary antibodies (sheep anti-kisspeptin at 1:120,000, and rabbit anti-GnRH at 1:100,000) detected with fluorescently tagged secondary antibodies (antisheep, Alexa Fluor 488; antirabbit, Cy3) in combination with confocal microscopy. Kisspeptin perikarya were found only in the mediobasal hypothalamus (MBH) almost exclusively in the posterior two-thirds of the arcuate nucleus. Surprisingly, kisspeptin-beaded axons made only infrequent contacts with GnRH neurons (kisspeptin and GnRH profiles abutting in a 0.5- to 1.0-mum optical section) in the MBH. In the median eminence, kisspeptin and GnRH axons were found in extensive and intimate association. GnRH contacts on kisspeptin perikarya and dendrites were observed. These findings indicate that nonsynaptic pathways of communication in the median eminence should be considered as a possible mechanism of kisspeptin regulation of GnRH release, and provide an anatomical basis for reciprocal control of kisspeptin neuronal activity by GnRH.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Neurônios/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Imunofluorescência , Macaca mulatta , Masculino , Microscopia Confocal , Neurônios/metabolismo , Transmissão Sináptica/fisiologia
15.
Endocrinology ; 149(6): 3176-83, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18292188

RESUMO

The effects of gonadectomy and hormone treatment on spatial learning were evaluated in adult male and female rats using a modified version of a 12-arm radial maze task. In this version, procedures were used to minimize the effectiveness of strategies less reliant on working and reference memory. Results demonstrate significant sex differences favoring male performance on the working memory component of the task. In contrast, females performed slightly better than males on the reference memory component of the task. In females, ovariectomy produced a decrease in overall accuracy (i.e. an increase in the number of arm entries necessary to obtain all food pellets) as well as declines in working and reference memory performance. Both accuracy and working memory performance, but not reference memory performance, were restored by estradiol treatment. In males, castration impaired working memory performance but did not significantly affect overall accuracy or reference memory performance. Surprisingly, all groups of males performed poorly on the reference memory component of the task, and testosterone treatment appeared to worsen, rather than improve, both accuracy and reference memory performance in males. This may reflect a male preference for certain strategies that were rendered ineffective on this task. Significant sex differences, as well as treatment effects, on arm preference patterns were also detected; however, these differences were not sufficient to account for the effects of sex and treatment on acquisition. Collectively, the data demonstrate robust effects of gonadectomy and hormone treatment on acquisition of this modified radial arm maze task in females, with lesser effects in males.


Assuntos
Estradiol/farmacologia , Aprendizagem em Labirinto/fisiologia , Testosterona/farmacologia , Animais , Feminino , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Memória/fisiologia , Orquiectomia , Ovariectomia , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
16.
Horm Behav ; 52(3): 352-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17583704

RESUMO

This study examined whether effects on turning strategy, use of an allocentric strategy, and/or short-term spatial memory account for the effects of estradiol treatment on acquisition of a delayed matching-to-position (DMP) T-maze task, in rats with and without basal forebrain cholinergic lesions. Ovariectomized rats received either 192IgG saporin (SAP) or saline injected into the medial septum. Two weeks later, half of each group received either continuous estradiol treatment (5-mm silastic capsule containing 17-beta-estradiol implanted s.c.) or implantation of an empty capsule. All rats were trained on the DMP task. Results show that estradiol enhanced, and SAP lesions impaired, learning on the DMP task. SAP lesions impaired learning primarily by increasing the use of a persistent turning strategy early on during training. In contrast, estradiol had no apparent effect on turning strategy, and enhanced learning only in non-lesioned rats. There was no evidence that any of these effects were due primarily to an effect on ultimate strategy selection (e.g., allocentric vs. egocentric, evaluated with a probe trial in which the maze was rotated 180 degrees), or on short-term spatial memory (evaluated by increasing the intertrial delay). We conclude that estradiol enhances DMP acquisition via a mechanism independent of effects on turning strategy and short-term memory, but nevertheless dependent on cholinergic neurons in the MS and VDB. We hypothesize that estradiol may affect the facility with which female rats are able to extract and incorporate extramaze information into an effective navigational strategy, and that this may be mediated by effects in prefrontal cortex.


Assuntos
Fibras Colinérgicas/fisiologia , Aprendizagem por Discriminação/fisiologia , Estradiol/fisiologia , Aprendizagem em Labirinto/fisiologia , Septo do Cérebro/fisiologia , Análise de Variância , Animais , Aprendizagem por Associação/fisiologia , Feminino , Córtex Pré-Frontal/fisiologia , Resolução de Problemas/fisiologia , Prosencéfalo/citologia , Prosencéfalo/fisiologia , Ratos , Ratos Sprague-Dawley , Septo do Cérebro/citologia , Comportamento Espacial/fisiologia , Fatores de Tempo
17.
Horm Behav ; 48(3): 268-77, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15890350

RESUMO

The effects of castration and hormone treatment on cognitive performance were evaluated in male rats. Castrated animals received either testosterone or estradiol and were compared with gonadally intact animals and with castrated controls. Results revealed a dissociation between the effects of testosterone and estradiol on cognitive performance in male rats. Specifically, estradiol enhanced acquisition of a delayed matching-to-position spatial task, similar to previously published observations in females. In contrast, neither castration nor testosterone treatment had any significant effect on acquisition of the delayed matching-to-position task, but did appear to affect delay-dependent working memory. None of the treatments had any significant effect on acquisition of a configural association negative patterning task, suggesting that effects on the delayed matching-to-position task were not due to effects on motivational factors. These data demonstrate that, as in females, gonadal hormones influence cognitive performance in males and suggest that estradiol and testosterone affect distinct cognitive domains.


Assuntos
Cognição/fisiologia , Aprendizagem por Discriminação/fisiologia , Estradiol/fisiologia , Comportamento Espacial/fisiologia , Testosterona/fisiologia , Análise de Variância , Animais , Aprendizagem por Associação/fisiologia , Castração , Masculino , Ratos , Ratos Sprague-Dawley , Percepção Espacial/fisiologia , Fatores de Tempo
18.
Psychoneuroendocrinology ; 29(6): 741-8, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15110923

RESUMO

The effects of raloxifene on acquisition of a delayed matching to position (DMP) T-maze task and on hippocampal acetylcholine release were evaluated and compared with estradiol, to determine whether raloxifene has estrogenic effects on cognitive performance and hippocampal cholinergic activity. Ovariectomized rats received continuous treatment with raloxifene (one of two doses), estradiol, or vehicle for 30 days, followed by behavioral training, and then in vivo microdialysis assessment of basal and potassium-stimulated acetylcholine release. The data show that estradiol significantly enhanced DMP acquisition, whereas raloxifene did not. In contrast, both estradiol and the higher dose of raloxifene significantly increased potassium-stimulated acetylcholine release in the hippocampus. These data suggest that, despite increasing evidence for estrogenic effects of raloxifene in brain, raloxifene does not mimic the effects of estrogen on cognitive performance as assessed by acquisition of a simple spatial memory task in ovariectomized rats.


Assuntos
Acetilcolina/metabolismo , Estradiol/fisiologia , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Microdiálise , Ovariectomia , Ratos , Ratos Sprague-Dawley , Útero/efeitos dos fármacos
19.
J Neurosci Res ; 74(5): 637-43, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14635215

RESUMO

The effects of hormone replacement therapy on brain aging and cognition are an important public health issue, which, despite much research and debate, has not yet been resolved. In this Mini-Review, we describe how much of the clinical literature takes on new meaning when interpreted in light of recent preclinical data. We predict, based on these data, that hormone replacement therapy will in fact provide substantial benefit with respect to age-related cognitive decline, provided that therapy is administered in an appropriate regimen and is initiated within a window of time following the loss of ovarian function. The application of these data to recent clinical findings is discussed.


Assuntos
Envelhecimento , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Terapia de Reposição de Estrogênios , Estrogênios/farmacologia , Animais , Demência/prevenção & controle , Feminino , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
J Neurosci ; 23(11): 4479-90, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12805288

RESUMO

Estrogen transiently disinhibits hippocampal CA1 pyramidal cells in adult female rats and prolongs the decay time of IPSCs in these cells. Estrogen-induced changes in synaptic inhibition are likely to be causally related to subsequent enhancements in excitatory synaptic function in CA1 pyramidal cells. Currently, it is unknown how or on what cells estrogen acts to regulate synaptic inhibition in the hippocampus. We used whole-cell voltage-clamp recording of synaptically evoked IPSCs, spontaneous IPSCs, and miniature IPSCs in CA1 pyramidal cells to evaluate estrogen-induced changes in synaptic inhibition in ovariectomized rats that either were pretreated with the estrogen receptor (ER) antagonist tamoxifen or in which basal forebrain cholinergic neurons were eliminated by previous infusion of 192IgG-saporin toxin into the medial septum. We found that estrogen-induced disinhibition and prolongation of IPSCs are entirely dependent on a tamoxifen-sensitive ER. Estrogen-induced disinhibition is partially dependent on basal forebrain cholinergic neurons, but the prolongation of IPSCs is not at all dependent on these cells. Paired-pulse experiments and recordings of action potential-related spontaneous IPSCs suggest that estrogen-induced disinhibition is associated with a decrease in probability of release at GABAergic synapses, which decreases the amplitude of IPSCs produced by inhibitory neuron action potentials. Our findings lend novel insights into estrogen regulation of inhibitory synapses in the hippocampus and point to estrogen action on basal forebrain cholinergic neurons as critically involved in mediating the effects of estrogen in the hippocampus.


Assuntos
Estradiol/análogos & derivados , Estrogênios/farmacologia , Hipocampo/fisiologia , Inibição Neural/fisiologia , Prosencéfalo/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Colina O-Acetiltransferase/metabolismo , Colinérgicos/farmacologia , Fibras Colinérgicas/fisiologia , Estimulação Elétrica , Estradiol/administração & dosagem , Antagonistas de Estrogênios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Imunotoxinas/farmacologia , Técnicas In Vitro , N-Glicosil Hidrolases , Inibição Neural/efeitos dos fármacos , Ovariectomia , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Inativadoras de Ribossomos Tipo 1 , Saporinas , Tamoxifeno/farmacologia , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA