Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0298748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630734

RESUMO

Although histone proteins are widely known for their intranuclear functions where they organize DNA, all five histone types can also be released into the extracellular space from damaged cells. Extracellular histones can interact with pattern recognition receptors of peripheral immune cells, including toll-like receptor 4 (TLR4), causing pro-inflammatory activation, which indicates they may act as damage-associated molecular patterns (DAMPs) in peripheral tissues. Very limited information is available about functions of extracellular histones in the central nervous system (CNS). To address this knowledge gap, we applied mixed histones (MH) to cultured cells modeling neurons, microglia, and astrocytes. Microglia are the professional CNS immunocytes, while astrocytes are the main support cells for neurons. Both these cell types are critical for neuroimmune responses and their dysregulated activity contributes to neurodegenerative diseases. We measured effects of extracellular MH on cell viability and select neuroimmune functions of microglia and astrocytes. MH were toxic to cultured primary murine neurons and also reduced viability of NSC-34 murine and SH-SY5Y human neuron-like cells in TLR4-dependent manner. MH did not affect the viability of resting or immune-stimulated BV-2 murine microglia or U118 MG human astrocytic cells. When applied to BV-2 cells, MH enhanced secretion of the potential neurotoxin glutamate, but did not modulate the release of nitric oxide (NO), tumor necrosis factor-α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), or the overall cytotoxicity of lipopolysaccharide (LPS)- and/or interferon (IFN)-γ-stimulated BV-2 microglial cells towards NSC-34 neuron-like cells. We demonstrated, for the first time, that MH downregulated phagocytic activity of LPS-stimulated BV-2 microglia. However, MH also exhibited protective effect by ameliorating the cytotoxicity of LPS-stimulated U118 MG astrocytic cells towards SH-SY5Y neuron-like cells. Our data demonstrate extracellular MH could both damage neurons and alter neuroimmune functions of glial cells. These actions of MH could be targeted for treatment of neurodegenerative diseases.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Camundongos , Humanos , Animais , Histonas/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Neuroblastoma/metabolismo , Microglia/metabolismo , Células Cultivadas , Doenças Neurodegenerativas/metabolismo
2.
Cell Rep ; 43(2): 113812, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377003

RESUMO

The ability of the mammalian brain to maintain spatial representations of external or internal information for short periods of time has been associated with sustained neuronal spiking and reverberatory neural network activity in the medial entorhinal cortex. Here, we show that conditional genetic deletion of netrin-1 or the netrin receptor deleted-in-colorectal cancer (DCC) from forebrain excitatory neurons leads to deficits in short-term spatial memory. We then demonstrate that conditional deletion of either netrin-1 or DCC inhibits cholinergic persistent firing and show that cholinergic activation of muscarinic receptors expressed by entorhinal cortical neurons promotes persistent firing by recruiting DCC to the plasma membrane. Together, these findings indicate that normal short-term spatial memory function requires the synergistic actions of acetylcholine and netrin-1.


Assuntos
Acetilcolina , Córtex Entorrinal , Animais , Acetilcolina/farmacologia , Netrina-1 , Prosencéfalo , Colinérgicos , Mamíferos
3.
Neurosci Res ; 204: 34-45, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38278218

RESUMO

Histones organize DNA within cellular nuclei, but they can be released from damaged cells. In peripheral tissues extracellular histones act as damage-associated molecular patterns (DAMPs) inducing pro-inflammatory activation of immune cells. Limited studies have considered DAMP-like activity of histones in the central nervous system (CNS); therefore, we studied the effects of extracellular histones on microglia, the CNS immunocytes, and on neuronal cells. Both the linker histone H1 and the core histone H3 induced pro-inflammatory activation of microglia-like cells by upregulating their secretion of NO and cytokines, including interferon-γ-inducible protein 10 (IP-10) and tumor necrosis factor-α (TNF). The selective inhibitors MMG-11 and TAK-242 were used to demonstrate involvement of toll-like receptors (TLR) 2 and 4, respectively, in H1-induced NO secretion by BV-2 microglia. H1, but not H3, downregulated the phagocytic activity of BV-2 microglia. H1 was also directly toxic to all neuronal cell types studied. We conclude that H1, and to a lesser extent H3, when released extracellularly, have the potential to act as a CNS DAMPs. Inhibition of the DAMP-like effects of extracellular histones on microglia and their neurotoxic activity represents a potential strategy for combating neurodegenerative diseases that are characterized by the adverse activation of microglia and neuronal death.


Assuntos
Histonas , Microglia , Neurônios , Histonas/metabolismo , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Citocinas/metabolismo , Doenças Neuroinflamatórias/metabolismo , Linhagem Celular , Óxido Nítrico/metabolismo
4.
PLoS One ; 18(7): e0289169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498903

RESUMO

The phagocytic activity of glial cells is essential for maintaining normal brain activity, and its dysfunction may contribute to the central nervous system (CNS) pathologies, including neurodegenerative diseases. Phagocytic activity is one of the well-established neuroimmune functions of microglia. Although emerging evidence indicates that astrocytes can also function as CNS phagocytes in humans and rodents, limited information is available about the molecular mechanism regulating this function. To address this knowledge gap, we studied modulation of the phagocytic activity of human U118 MG astrocytic cells and murine primary astrocytes by four CNS inflammatory mediators and bacterial endotoxin lipopolysaccharide (LPS). LPS and cytochrome c (CytC) upregulated, while interferon (IFN)-γ downregulated, phagocytosis of latex beads by human astrocytic cells and phagocytosis of synaptosomes by murine primary astrocytes. Interleukin (IL)-1ß and tumor necrosis factor (TNF)-α had no effect on the phagocytic activity of human astrocytic cells but upregulated this function in murine astrocytes. Varying effects of combinations of the above inflammatory mediators were observed in these two cell types. LPS- and CytC-induced phagocytic activity of human astrocytic cells was partially mediated by activation of toll-like receptor 4 (TLR4). By monitoring other functions of astrocytes, we concluded there were no correlations between the effects of the mediators studied on astrocyte phagocytic activity and their secretion of cytokines, cytotoxins, or glutamate. Our study identified four candidate CNS regulators of astrocyte phagocytic activity. Future investigation of molecular mechanisms behind this regulation could identify novel therapeutic targets allowing modulation of this astrocyte-mediated clearance mechanism in CNS pathologies.


Assuntos
Astrócitos , Lipopolissacarídeos , Camundongos , Animais , Humanos , Lipopolissacarídeos/farmacologia , Células Cultivadas , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fagócitos/metabolismo , Encéfalo/metabolismo , Mediadores da Inflamação/farmacologia
5.
Brain Res ; 1807: 148315, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878343

RESUMO

Microglia are the resident immune cells of the brain which regulate both the innate and adaptive neuroimmune responses in health and disease. In response to specific endogenous and exogenous stimuli, microglia transition to one of their reactive states characterized by altered morphology and function, including their secretory profile. A component of the microglial secretome is cytotoxic molecules capable of causing damage and death to nearby host cells, thus contributing to the pathogenesis of neurodegenerative disorders. Indirect evidence from secretome studies and measurements of mRNA expression using diverse microglial cell types suggest different stimuli may induce microglia to secrete distinct subsets of cytotoxins. We demonstrate the accuracy of this hypothesis directly by challenging murine BV-2 microglia-like cells with eight different immune stimuli and assessing secretion of four potentially cytotoxic molecules, including nitric oxide (NO), tumor necrosis factor α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), and glutamate. Lipopolysaccharide (LPS) and a combination of interferon (IFN)-γ plus LPS induced secretion of all toxins studied. IFN-ß, IFN-γ, polyinosinic:polycytidylic acid (poly I:C), and zymosan A upregulated secretion of subsets of these four cytotoxins. LPS and IFN-γ, alone or in combination, as well as IFN-ß induced toxicity of BV-2 cells towards murine NSC-34 neuronal cells, while ATP, N-formylmethionine-leucyl-phenylalanine (fMLP), and phorbol 12-myristate 13-acetate (PMA) did not affect any parameters studied. Our observations contribute to a growing body of knowledge on the regulation of the microglial secretome, which may inform future development of novel therapeutics for neurodegenerative diseases, where dysregulated microglia are key contributors to pathogenesis.


Assuntos
Microglia , Neurotoxinas , Camundongos , Animais , Microglia/metabolismo , Neurotoxinas/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Citotoxinas/metabolismo , Citotoxinas/farmacologia
6.
Cell Rep ; 25(1): 168-182.e6, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30282026

RESUMO

Dynamic trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors (AMPARs) to synapses is critical for activity-dependent synaptic plasticity underlying learning and memory, but the identity of key molecular effectors remains elusive. Here, we demonstrate that membrane depolarization and N-methyl-D-aspartate receptor (NMDAR) activation triggers secretion of the chemotropic guidance cue netrin-1 from dendrites. Using selective genetic deletion, we show that netrin-1 expression by excitatory neurons is required for NMDAR-dependent long-term potentiation (LTP) in the adult hippocampus. Furthermore, we demonstrate that application of exogenous netrin-1 is sufficient to trigger the potentiation of excitatory glutamatergic transmission at hippocampal Schaffer collateral synapses via Ca2+-dependent recruitment of GluA1-containing AMPARs, promoting the maturation of immature or nascent synapses. These findings identify a central role for activity-dependent release of netrin-1 as a critical effector of synaptic plasticity in the adult hippocampus.


Assuntos
Hipocampo/metabolismo , Netrina-1/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Potenciação de Longa Duração/fisiologia , Camundongos , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
7.
eNeuro ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225353

RESUMO

Leucine-rich glioma-inactivated protein 1 (LGI1) is a secreted neuronal protein and a Nogo receptor 1 (NgR1) ligand. Mutations in LGI1 in humans causes autosomal dominant lateral temporal lobe epilepsy and homozygous deletion of LGI1 in mice results in severe epileptic seizures that cause early postnatal death. NgR1 plays an important role in the development of CNS synapses and circuitry by limiting plasticity in the adult cortex via the activation of RhoA. These relationships and functions prompted us to examine the effect of LGI1 on synapse formation in vitro and in vivo. We report that application of LGI1 increases synaptic density in neuronal culture and that LGI1 null hippocampus has fewer dendritic mushroom spines than in wild-type (WT) littermates. Further, our electrophysiological investigations demonstrate that LGI1 null hippocampal neurons possess fewer and weaker synapses. RhoA activity is significantly increased in cortical cultures derived from LGI1 null mice and using a reconstituted system; we show directly that LGI1 antagonizes NgR1-tumor necrosis factor receptor orphan Y (TROY) signaling. Our data suggests that LGI1 enhances synapse formation in cortical and hippocampal neurons by reducing NgR1 signaling.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Neocórtex/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptor Nogo 1/metabolismo , Proteínas/fisiologia , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Embrião de Mamíferos , Epilepsia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Proteína rhoA de Ligação ao GTP
8.
PLoS One ; 11(3): e0150601, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26950209

RESUMO

Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Técnicas Citológicas/métodos , Precursores de Proteínas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/isolamento & purificação , Células HEK293 , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Células PC12 , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/isolamento & purificação , Ratos , Receptores de Fator de Crescimento Neural/metabolismo
9.
Int J Neuropsychopharmacol ; 16(1): 189-98, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22226089

RESUMO

Hyperforin is one of the main bioactive compounds that underlie the antidepressant actions of the medicinal plant Hypericum perforatum (St. John's wort). However, the effects of a chronic hyperforin treatment on brain cells remains to be fully addressed. The following study was undertaken to further advance our understanding of the biological effects of this plant extract on neurons. Special attention was given to its impact on the brain-derived neurotrophic factor (BDNF) receptor TrkB and on adult hippocampal neurogenesis since they appear central to the mechanisms of action of antidepressants. The consequences of a chronic hyperforin treatment were investigated on cortical neurons in culture and on the brain of adult mice treated for 4 wk with a daily injection (i.p.) of hyperforin (4 mg/kg). Its effects on the expression of the cyclic adenosine monophosphate response element-binding protein (CREB), phospho-CREB (p-CREB), TrkB and phospho-TrkB (p-TrkB) were analysed by Western blot experiments and its impact on adult hippocampal neurogenesis was also investigated. Hyperforin stimulated the expression of TRPC6 channels and TrkB via SKF-96365-sensitive channels controlling a downstream signalling cascade involving Ca(2+), protein kinase A, CREB and p-CREB. In vivo, hyperforin augmented the expression of TrkB in the cortex but not in the hippocampus where hippocampal neurogenesis remained unchanged. In conclusion, this plant extract acts on the cortical BDNF/TrkB pathway leaving adult hippocampal neurogenesis unaffected. This study provides new insights on the neuronal responses controlled by hyperforin. We propose that the cortex is an important brain structure targeted by hyperforin.


Assuntos
Antidepressivos/farmacologia , Córtex Cerebral/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Floroglucinol/análogos & derivados , Receptor trkB/fisiologia , Terpenos/farmacologia , Regulação para Cima/fisiologia , Fatores Etários , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Floroglucinol/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Gravidez , Receptor trkB/biossíntese , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA