Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39437886

RESUMO

Calcium (Ca2+) dysregulation is a hallmark feature of cardiovascular disease. Intracellular Ca2+ regulation is essential for proper heart function and is controlled by the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2a). Another-regulin (ALN) is a newly discovered cardiomyocyte-expressed SERCA2a inhibitor, suggesting cardiomyocyte Ca2+-handling is more complex than previously appreciated. To study the role of ALN in cardiomyocytes, we generated ALN null mice (knockout, KO) and found that cardiomyocytes from these animals displayed enhanced Ca2+ cycling and contractility compared to wildtype (WT) mice, indicating enhanced SERCA2a activity. In vitro and in vivo studies show that ALN is post-translationally modified via phosphorylation on Serine 19 (S19), suggesting this contributes to its ability to regulate SERCA2a. Immunoprecipitation and FRET analysis of ALN-WT, phospho-deficient ALN (S19A), or phosphomimetic ALN (S19D) revealed that S19 phosphorylation alters the SERCA2a-ALN interaction, leading to relief of its inhibitory effects. Adeno-associated virus mediated delivery of ALN-WT or phospho-mutant ALN-S19A/D in ALN KO mice showed that cardiomyocyte-specific expression of phospho-deficient ALN-S19A resulted in increased SERCA2a inhibition characterized by reduced rates of cytoplasmic Ca2+ clearance compared to ALN-WT and ALN-S19D expressing cells, further supporting a role for this phosphorylation event in controlling SERCA2a-regulation by ALN. Levels of ALN phosphorylation were markedly increased in cardiomyocytes in response to Gαq agonists (angiotensin II, endothelin-1, phenylephrine) and Gαq-mediated phosphorylation of ALN translated to increased Ca2+ cycling in cardiomyocytes from WT but not ALN KO mice. Collectively, these results indicate that ALN uniquely regulates Ca2+ handling in cardiomyocytes via integration of neuroendocrine signaling with SERCA2a activity.

2.
J Am Heart Assoc ; 12(3): e027480, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36695318

RESUMO

Background Cardiomyopathy is a leading health threat in Duchenne muscular dystrophy (DMD). Cytosolic calcium upregulation is implicated in DMD cardiomyopathy. Calcium is primarily removed from the cytosol by the sarcoendoplasmic reticulum calcium ATPase (SERCA). SERCA activity is reduced in DMD. Improving SERCA function may treat DMD cardiomyopathy. Dwarf open reading frame (DWORF) is a recently discovered positive regulator for SERCA, hence, a potential therapeutic target. Methods and Results To study DWORF's involvement in DMD cardiomyopathy, we quantified DWORF expression in the heart of wild-type mice and the mdx model of DMD. To test DWORF gene therapy, we engineered and characterized an adeno-associated virus serotype 9-DWORF vector. To determine if this vector can mitigate DMD cardiomyopathy, we delivered it to 6-week-old mdx mice (6×1012 vector genome particles/mouse) via the tail vein. Exercise capacity, heart histology, and cardiac function were examined at 18 months of age. We found DWORF expression was significantly reduced at the transcript and protein levels in mdx mice. Adeno-associated virus serotype 9-DWORF vector significantly enhanced SERCA activity. Systemic adeno-associated virus serotype 9-DWORF therapy reduced myocardial fibrosis and improved treadmill running, electrocardiography, and heart hemodynamics. Conclusions Our data suggest that DWORF deficiency contributes to SERCA dysfunction in mdx mice and that DWORF gene therapy holds promise to treat DMD cardiomyopathy.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Camundongos Endogâmicos mdx , Cálcio , Fases de Leitura Aberta , Cardiomiopatias/genética , Cardiomiopatias/terapia , Terapia Genética/métodos
4.
Circulation ; 138(12): 1236-1252, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29653926

RESUMO

BACKGROUND: Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS: Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS: pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased ß1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS: Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.


Assuntos
Fibronectinas/antagonistas & inibidores , Insuficiência Cardíaca/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miofibroblastos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Quinase 1 de Adesão Focal/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Integrina beta1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Fosforilação , Polimerização , Transdução de Sinais/efeitos dos fármacos
5.
J Invest Dermatol ; 135(1): 160-169, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25111616

RESUMO

Serine proteases are critical for epidermal barrier homeostasis, and their aberrant expression and/or activity is associated with chronic skin diseases. Elevated levels of the serine protease inhibitors SERPINB3 and SERPINB4 are seen in patients with atopic dermatitis and psoriasis. However, their mechanistic role in the skin is unknown. To evaluate the contribution of Serpinb3a (mouse homolog of SERPINB3 and SERPINB4) in atopic dermatitis, we examined the effect of topical Aspergillus fumigatus extract exposure in wild-type and Serpinb3a-null mice on transepidermal water loss (TEWL), sensitization, and inflammation. Allergen exposure induced Serpinb3a expression in the skin, along with increased TEWL, epidermal thickness, and skin inflammation, all of which were attenuated in the absence of Serpinb3a. Attenuated TEWL correlated with decreased expression of the pro-inflammatory marker S100A8. Silencing of SERPINB3/B4 in human keratinocytes decreased S100A8 expression, supporting a role for SERPINB3/B4 in the initiation of the acute inflammatory response. RNA-seq analysis following allergen exposure identified a network of pro-inflammatory genes induced in wild-type mice that was absent in Serpinb3a-null mice. In conclusion, Serpinb3a deficiency attenuates barrier dysfunction and the early inflammatory response following cutaneous allergen exposure, supporting a role for Serpinb3a (mice) and SERPINB3/B4 (humans) early in atopic dermatitis.


Assuntos
Antígenos de Neoplasias/imunologia , Dermatite Atópica/imunologia , Serpinas/imunologia , Doença Aguda , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Aspergillus fumigatus/imunologia , Calgranulina A/genética , Calgranulina A/imunologia , Calgranulina A/metabolismo , Doença Crônica , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Epiderme/imunologia , Epiderme/metabolismo , Expressão Gênica/imunologia , Humanos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Serpinas/genética , Serpinas/metabolismo , Perda Insensível de Água/imunologia
6.
J Immunol ; 192(3): 859-66, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24337738

RESUMO

Despite the important role for epidermal growth factor (EGF) in epithelial homeostasis and wound healing, it has not been investigated in atopic dermatitis (AD). We used AD animal models to explore the role of EGF in AD. In an acute AD model, skin transepidermal water loss was significantly attenuated in EGF-treated mice. Blockade of EGFR signaling genetically or pharmacologically confirms a protective role for EGFR signaling in AD. In a chronic/relapsing AD model, EGF treatment of mice with established AD resulted in an attenuation of AD exacerbation (skin epithelial thickness, cutaneous inflammation, and total and allergen specific IgE) following cutaneous allergen rechallenge. EGF treatment did not alter expression of skin barrier junction proteins or antimicrobial peptides in the AD model. However, EGF treatment attenuated allergen-induced expression of IL-17A, CXCL1, and CXCL2 and neutrophil accumulation in AD skin following cutaneous allergen exposure. IL-17A production was decreased in the in vitro restimulated skin-draining lymph node cells from the EGF-treated mice. Similarly, IL-17A was increased in waved-2 mice skin following allergen exposure. Whereas IL-6 and IL-1ß expression was attenuated in the skin of EGF-treated mice, EGF treatment also suppressed allergen-induced IL-6 production by keratinocytes. Given the central role of IL-6 in priming Th17 differentiation in the skin, this effect of EGF on keratinocytes may contribute to the protective roles for EGFR in AD pathogenesis. In conclusion, our study provides evidence for a previously unrecognized protective role for EGF in AD and a new role for EGF in modulating IL-17 responses in the skin.


Assuntos
Dermatite Atópica/imunologia , Fator de Crescimento Epidérmico/imunologia , Receptores ErbB/imunologia , Interleucina-17/biossíntese , Interleucina-6/biossíntese , Pele/imunologia , Células Th17/imunologia , Administração Cutânea , Alérgenos/administração & dosagem , Alérgenos/toxicidade , Animais , Células Cultivadas , Quimiocina CXCL1/biossíntese , Quimiocina CXCL1/genética , Quimiocina CXCL2/biossíntese , Quimiocina CXCL2/genética , Dermatite Atópica/etiologia , Dermatite Atópica/patologia , Dermatite Atópica/prevenção & controle , Progressão da Doença , Fator de Crescimento Epidérmico/administração & dosagem , Fator de Crescimento Epidérmico/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-17/genética , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Interleucina-6/genética , Interleucina-6/imunologia , Interleucinas/biossíntese , Interleucinas/genética , Queratinócitos/imunologia , Queratinócitos/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Quinazolinas/farmacologia , Recidiva , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Pele/patologia , Organismos Livres de Patógenos Específicos , Interleucina 22
7.
PLoS One ; 8(3): e60632, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555996

RESUMO

BACKGROUND: Diesel exhaust particle (DEP) exposure enhances allergic inflammation and has been linked to the incidence of asthma. Oxidative stress on the thiol molecules cysteine (Cys) and glutathione (GSH) can promote inflammatory host responses. The effect of DEP on the thiol oxidation/reduction (redox) state in the asthmatic lung is unknown. OBJECTIVE: To determine if DEP exposure alters the Cys or GSH redox state in the asthmatic airway. METHODS: Bronchoalveolar lavage fluid was obtained from a house dust mite (HDM) induced murine asthma model exposed to DEP. GSH, glutathione disulfide (GSSG), Cys, cystine (CySS), and s-glutathionylated cysteine (CySSG) were determined by high pressure liquid chromatography. RESULTS: DEP co-administered with HDM, but not DEP or HDM alone, decreased total Cys, increased CySS, and increased CySSG without significantly altering GSH or GSSG. CONCLUSIONS: DEP exposure promotes oxidation and S-glutathionylation of cysteine amino acids in the asthmatic airway, suggesting a novel mechanism by which DEP may enhance allergic inflammatory responses.


Assuntos
Asma/etiologia , Cisteína/análogos & derivados , Cisteína/análise , Glutationa/análogos & derivados , Glutationa/análise , Material Particulado/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Animais , Asma/imunologia , Asma/metabolismo , Brônquios/citologia , Brônquios/imunologia , Brônquios/metabolismo , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , Cisteína/imunologia , Cisteína/metabolismo , Cistina/análise , Cistina/imunologia , Cistina/metabolismo , Glutationa/imunologia , Glutationa/metabolismo , Dissulfeto de Glutationa/análise , Dissulfeto de Glutationa/imunologia , Dissulfeto de Glutationa/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Estresse Oxidativo , Pyroglyphidae/imunologia , Emissões de Veículos/análise
8.
J Allergy Clin Immunol ; 128(3): 539-48, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21570714

RESUMO

BACKGROUND: Glutathione S-transferase pi (GSTPi) is the predominant redox regulator in the lung. Although evidence implicates an important role for GSTPi in asthma, the mechanism for this has remained elusive. OBJECTIVES: We sought to determine how GSTPi is regulated in asthma and to elucidate its role in maintaining redox homeostasis. METHODS: We elucidated the regulation of GSTPi in children with asthma and used murine models of asthma to determine the role of GSTPi in redox homeostasis. RESULTS: Our findings demonstrate that GSTPi transcript levels are markedly downregulated in allergen- and IL-13-treated murine models of asthma through signal transducer and activator of transcription 6-dependent and independent pathways. Nuclear factor erythroid 2-related factor 2 was also downregulated in these models. The decrease in GSTPi expression was associated with decreased total glutathione S-transferase activity in the lungs of mice. Examination of cystine intermediates uncovered a functional role for GSTPi in regulating cysteine oxidation, whereby GSTPi-deficient mice exhibited increased oxidative stress (increase in percentage cystine) compared with wild-type mice after allergen challenge. GSTPi expression was similarly downregulated in children with asthma. CONCLUSIONS: These data collectively suggest that downregulation of GSTPi after allergen challenge might contribute to the asthma phenotype because of disruption of redox homeostasis and increased oxidative stress. Furthermore, GSTPi might be an important therapeutic target for asthma, and evaluation of GSTPi expression might prove beneficial in identifying patients who would benefit from therapy targeting this pathway.


Assuntos
Asma/fisiopatologia , Regulação para Baixo , Glutationa S-Transferase pi/metabolismo , Estresse Oxidativo/fisiologia , Adolescente , Alérgenos/imunologia , Animais , Asma/metabolismo , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Glutationa S-Transferase pi/genética , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxirredução , Transdução de Sinais , Testes Cutâneos
9.
Am J Physiol Lung Cell Mol Physiol ; 300(3): L414-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21224214

RESUMO

Increases in the epidermal growth factor receptor (EGFR) have been associated with the severity of airway thickening in chronic asthmatic subjects, and EGFR signaling is induced by asthma-related cytokines and inflammation. The goal of this study was to determine the role of EGFR signaling in a chronic allergic model of asthma and specifically in epithelial cells, which are increasingly recognized as playing an important role in asthma. EGFR activation was assessed in mice treated with intranasal house dust mite (HDM) for 3 wk. EGFR signaling was inhibited in mice treated with HDM for 6 wk, by using either the drug erlotinib or a genetic approach that utilizes transgenic mice expressing a mutant dominant negative epidermal growth factor receptor in the lung epithelium (EGFR-M mice). Airway hyperreactivity (AHR) was assessed by use of a flexiVent system after increasing doses of nebulized methacholine. Airway smooth muscle (ASM) thickening was measured by morphometric analysis. Sensitization to HDM (IgG and IgE), inflammatory cells, and goblet cell changes were also assessed. Increased EGFR activation was detected in HDM-treated mice, including in bronchiolar epithelial cells. In mice exposed to HDM for 6 wk, AHR and ASM thickening were reduced after erlotinib treatment and in EGFR-M mice. Sensitization to HDM and inflammatory cell counts were similar in all groups, except neutrophil counts, which were lower in the EGFR-M mice. Goblet cell metaplasia with HDM treatment was reduced by erlotinib, but not in EGFR-M transgenic mice. This study demonstrates that EGFR signaling, especially in the airway epithelium, plays an important role in mediating AHR and remodeling in a chronic allergic asthma model.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Asma/fisiopatologia , Hiper-Reatividade Brônquica/complicações , Células Epiteliais/enzimologia , Receptores ErbB/metabolismo , Transdução de Sinais , Animais , Asma/complicações , Asma/parasitologia , Asma/patologia , Hiper-Reatividade Brônquica/parasitologia , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/fisiopatologia , Doença Crônica , Modelos Animais de Doenças , Ativação Enzimática , Células Epiteliais/patologia , Receptores ErbB/antagonistas & inibidores , Células Caliciformes/patologia , Inflamação/complicações , Inflamação/patologia , Pulmão/parasitologia , Pulmão/patologia , Pulmão/fisiopatologia , Metaplasia , Camundongos , Músculo Liso/patologia , Pyroglyphidae/fisiologia
10.
J Allergy Clin Immunol ; 127(1): 254-61, 261.e1-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21126757

RESUMO

BACKGROUND: Asthma is a major public health burden worldwide. Studies from our group and others have demonstrated that SERPINB3 and SERPINB4 are induced in patients with asthma; however, their mechanistic role in asthma has yet to be determined. OBJECTIVE: To evaluate the role of Serpin3a, the murine homolog of SERPINB3 and SERPINB4, in asthma. METHODS: We studied wild-type Balb/c and Serpinb3a-null mice in house dust mite or IL-13-induced asthma models and evaluated airway hyperresponsiveness, inflammation, and goblet cell hyperplasia. RESULTS: Airway hyperresponsiveness and goblet cell hyperplasia were markedly attenuated in the Serpinb3a-null mice compared with the wild-type mice after allergen challenge, with minimal effects on inflammation. Expression of sterile alpha motif pointed domain containing v-ets avian erythroblastosis virus E26 oncogene homolog transcription factor (SPDEF), a transcription factor that mediates goblet cell hyperplasia, was decreased in the absence of Serpinb3a. IL-13-treated Serpinb3a-null mice showed attenuated airway hyperresponsiveness, inflammation, and mucus production. CONCLUSION: Excessive mucus production and mucus plugging are key pathologic features of asthma, yet the mechanisms responsible for mucus production are not well understood. Our data reveal a novel nonredundant role for Serpinb3a in mediating mucus production through regulation of SPDEF expression. This pathway may be used to target mucus hypersecretion effectively.


Assuntos
Asma/imunologia , Muco/imunologia , Proteínas Proto-Oncogênicas c-ets/imunologia , Serpinas/imunologia , Animais , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Expressão Gênica , Regulação da Expressão Gênica/imunologia , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Muco/metabolismo , Proteínas Proto-Oncogênicas c-ets/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serpinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA