Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Mol Cancer Ther ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648067

RESUMO

We recently reported that resistance to PD-1-blockade in a refractory lung cancer-derived model involved increased collagen deposition and the collagen-binding inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), and thus we hypothesized that LAIR1 and collagen cooperated to suppress therapeutic response. Here, we report LAIR1 is associated with tumor stroma and is highly expressed by intratumoral myeloid cells in both human tumors and mouse models of cancer. Stroma-associated myeloid cells exhibit a suppressive phenotype and correlate with LAIR1 expression in human cancer. NGM438, a novel humanized LAIR1 antagonist monoclonal antibody, elicits myeloid inflammation and allogeneic T cell responses by binding to LAIR1 and blocking collagen engagement. Further, a mouse-reactive NGM438 surrogate antibody sensitized refractory KP mouse lung tumors to anti-PD-1 therapy and resulted in increased intratumoral CD8+ T cell content and inflammatory gene expression. These data place LAIR1 at the intersection of stroma and suppressive myeloid cells and support the notion that blockade of the LAIR1/collagen axis can potentially address resistance to checkpoint inhibitor therapy in the clinic.

2.
Otolaryngol Head Neck Surg ; 170(5): 1430-1441, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38415855

RESUMO

OBJECTIVE: To determine the positivity rate of congenital cytomegalovirus (cCMV) testing among universal, hearing-targeted CMV testing (HT-cCMV) and delayed targeted dried blood spot (DBS) testing newborn screening programs, and to examine the characteristics of successful HT-cCMV testing programs. STUDY DESIGN: Prospective survey of birth hospitals performing early CMV testing. SETTING: Multiple institutions. METHODS: Birth hospitals participating in the National Institutes of Health ValEAR clinical trial were surveyed to determine the rates of cCMV positivity associated with 3 different testing approaches: universal testing, HT-cCMV, and DBS testing. A mixed methods model was created to determine associations between successful HT-cCMV screening and specific screening protocols. RESULTS: Eighty-two birth hospitals were surveyed from February 2019 to December 2021. Seven thousand six hundred seventy infants underwent universal screening, 9017 infants HT-cCMV and 535 infants delayed DBS testing. The rates of cCMV positivity were 0.5%, 1.5%, and 7.3%, respectively. The positivity rate for universal CMV screening was less during the COVID-19 pandemic than that reported prior to the pandemic. There were no statistically significant drops in positivity for any approach during the pandemic. For HT-cCMV testing, unique order sets and rigorous posttesting protocols were associated with successful screening programs. CONCLUSION: Rates of cCMV positivity differed among the 3 approaches. The rates are comparable to cohort studies reported in the literature. Universal CMV prevalence decreased during the pandemic but not significantly. Institutions with specific order set for CMV testing where the primary care physician orders the test and the nurse facilitates the testing process exhibited higher rates of HT-cCMV testing.


Assuntos
Infecções por Citomegalovirus , Triagem Neonatal , Humanos , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/epidemiologia , Triagem Neonatal/métodos , Recém-Nascido , Estudos Prospectivos , COVID-19/epidemiologia , COVID-19/diagnóstico , Estados Unidos/epidemiologia , Teste em Amostras de Sangue Seco , Feminino , Masculino
3.
J Clin Invest ; 133(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655662

RESUMO

Non-small cell lung cancers that harbor concurrent KRAS and TP53 (KP) mutations are immunologically warm tumors with partial responsiveness to anti-PD-(L)1 blockade; however, most patients observe little or no durable clinical benefit. To identify novel tumor-driven resistance mechanisms, we developed a panel of KP murine lung cancer models with intrinsic resistance to anti-PD-1 and queried differential gene expression between these tumors and anti-PD-1-sensitive tumors. We found that the enzyme autotaxin (ATX), and the metabolite it produces, lysophosphatidic acid (LPA), were significantly upregulated in resistant tumors and that ATX directly modulated antitumor immunity, with its expression negatively correlating with total and effector tumor-infiltrating CD8+ T cells. Pharmacological inhibition of ATX, or the downstream receptor LPAR5, in combination with anti-PD-1 was sufficient to restore the antitumor immune response and efficaciously control lung tumor growth in multiple KP tumor models. Additionally, ATX was significantly correlated with inflammatory gene signatures, including a CD8+ cytolytic score in multiple lung adenocarcinoma patient data sets, suggesting that an activated tumor-immune microenvironment upregulates ATX and thus provides an opportunity for cotargeting to prevent acquired resistance to anti-PD-1 treatment. These data reveal the ATX/LPA axis as an immunosuppressive pathway that diminishes the immune checkpoint blockade response in lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Linfócitos T Citotóxicos , Morte Celular , Microambiente Tumoral , Receptores de Ácidos Lisofosfatídicos
4.
Front Immunol ; 14: 1161869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449205

RESUMO

Introduction: Despite significant clinical advancement with the use of immune checkpoint blockade (ICB) in non-small cell lung cancer (NSCLC) there are still a major subset of patients that develop adaptive/acquired resistance. Understanding resistance mechanisms to ICB is critical to developing new therapeutic strategies and improving patient survival. The dynamic nature of the tumor microenvironment and the mutational load driving tumor immunogenicity limit the efficacy to ICB. Recent studies indicate that myeloid cells are drivers of ICB resistance. In this study we sought to understand which immune cells were contributing to resistance and if we could modify them in a way to improve response to ICB therapy. Results: Our results show that combination anti-PD-1/CTLA-4 produces an initial antitumor effect with evidence of an activated immune response. Upon extended treatment with anti-PD-1/CTLA-4 acquired resistance developed with an increase of the immunosuppressive populations, including T-regulatory cells, neutrophils and monocytes. Addition of anti-Ly6C blocking antibody to anti-PD-1/CTLA-4 was capable of completely reversing treatment resistance and restoring CD8 T cell activity in multiple KP lung cancer models and in the autochthonous lung cancer KrasLSL-G12D/p53fl/fl model. We found that there were higher classical Ly6C+ monocytes in anti-PD-1/CTLA-4 combination resistant tumors. B7 blockade illustrated the importance of dendritic cells for treatment efficacy of anti-Ly6C/PD-1/CTLA-4. We further determined that classical Ly6C+ monocytes in anti-PD-1/CTLA-4 resistant tumors are trafficked into the tumor via IFN-γ and the CCL2-CCR2 axis. Mechanistically we found that classical monocytes from ICB resistant tumors were unable to differentiate into antigen presenting cells and instead differentiated into immunosuppressive M2 macrophages or myeloid-derived suppressor cells (MDSC). Classical Ly6C+ monocytes from ICB resistant tumors had a decrease in both Flt3 and PU.1 expression that prevented differentiation into dendritic cells/macrophages. Conclusions: Therapeutically we found that addition of anti-Ly6C to the combination of anti-PD-1/CTLA-4 was capable of complete tumor eradication. Classical Ly6C+ monocytes differentiate into immunosuppressive cells, while blockade of classical monocytes drives dendritic cell differentiation/maturation to reinvigorate the anti-tumor T cell response. These findings support that immunotherapy resistance is associated with infiltrating monocytes and that controlling the differentiation process of monocytes can enhance the therapeutic potential of ICB.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Monócitos , Antígeno CTLA-4 , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Imunoterapia/métodos , Microambiente Tumoral
5.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36765664

RESUMO

B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL.

6.
Genes Dev ; 36(9-10): 582-600, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654454

RESUMO

One of the mechanisms by which cancer cells acquire hyperinvasive and migratory properties with progressive loss of epithelial markers is the epithelial-to-mesenchymal transition (EMT). We have previously reported that in different cancer types, including nonsmall cell lung cancer (NSCLC), the microRNA-183/96/182 cluster (m96cl) is highly repressed in cells that have undergone EMT. In the present study, we used a novel conditional m96cl mouse to establish that loss of m96cl accelerated the growth of Kras mutant autochthonous lung adenocarcinomas. In contrast, ectopic expression of the m96cl in NSCLC cells results in a robust suppression of migration and invasion in vitro, and tumor growth and metastasis in vivo. Detailed immune profiling of the tumors revealed a significant enrichment of activated CD8+ cytotoxic T lymphocytes (CD8+ CTLs) in m96cl-expressing tumors, and m96cl-mediated suppression of tumor growth and metastasis was CD8+ CTL-dependent. Using coculture assays with naïve immune cells, we show that m96cl expression drives paracrine stimulation of CD8+ CTL proliferation and function. Using tumor microenvironment-associated gene expression profiling, we identified that m96cl elevates the interleukin-2 (IL2) signaling pathway and results in increased IL2-mediated paracrine stimulation of CD8+ CTLs. Furthermore, we identified that the m96cl modulates the expression of IL2 in cancer cells by regulating the expression of transcriptional repressors Foxf2 and Zeb1, and thereby alters the levels of secreted IL2 in the tumor microenvironment. Last, we show that in vivo depletion of IL2 abrogates m96cl-mediated activation of CD8+ CTLs and results in loss of metastatic suppression. Therefore, we have identified a novel mechanistic role of the m96cl in the suppression of lung cancer growth and metastasis by inducing an IL2-mediated systemic CD8+ CTL immune response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Interleucina-2/genética , Interleucina-2/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos T Citotóxicos , Microambiente Tumoral
7.
Cancers (Basel) ; 14(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35681662

RESUMO

The lack of complete therapeutic success in the treatment of B-cell acute lymphoblastic leukemia (ALL) has been attributed, in part, to a subset of cells within the bone marrow microenvironment that are drug resistant. Recently, the cholesterol synthesis inhibitor, pitavastatin (PIT), was shown to be active in acute myeloid leukemia, prompting us to evaluate it in our in vitro co-culture model, which supports a chemo-resistant ALL population. We used phospho-protein profiling to evaluate the use of lipid metabolic active compounds in these chemo-resistant cells, due to the up-regulation of multiple active survival signals. In a co-culture with stromal cells, a shift towards anabolic processes occurred, which was further confirmed by assays showing increased lipid content. The treatment of REH leukemia cells with pitavastatin in the co-culture model resulted in significantly higher leukemic cell death than exposure to the standard-of-care chemotherapeutic agent, cytarabine (Ara-C). Our data demonstrates the use of pitavastatin as a possible alternative treatment strategy to improve patient outcomes in chemo-resistant, relapsed ALL.

8.
J Soc Work (Lond) ; 22(3): 655-673, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35521226

RESUMO

Summary: COVID-19 is shaping all aspects of life throughout the world. The unexpected number of people who have been infected with and died from coronavirus disease (COVID-19) is evidence that the pandemic has affected families and societies. The strong shock wave that has resulted in the international response has focused more on medical rather than psychosocial interventions. Little has been written or studied about the impact of COVID-19 on families. This article explores the impact of the COVID-19 quarantine on the mental health of families. We conducted 20 in-depth interviews with Jordanian families through snowball sampling. Findings: The results show that 20 interviewees described varied and new experiences. Many of the families we interviewed displayed symptoms of mental health problems, including disrupted sleep patterns, changes in eating habits, excessive digital media use, anxiety, depression, excessive smoking, stomach aches, bedwetting among children, and persistent headaches. The study also demonstrated the psychological stress partners felt during the lockdown due to their worries about job security. They also communicated their hope that renewed family commitments might bring more stability to their relationships. During the lockdown, family members spent more time together, and it became harder to conceal any issues from each other. Applications: The findings of this research demonstrate a critical need for social workers, and it is hoped that future legislation will include a role for social workers in various fields of crisis. Moreover, social workers should encourage families to ask for intervention to overcome the long-term effects that may result from COVID-19.

9.
J Commun ; 72(2): 187-213, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386823

RESUMO

In today's complex media environment, does media coverage influence youth and young adults' (YYA) tobacco use and intentions? We conceptualize the "public communication environment" and effect mediators, then ask whether over time variation in exogenously measured tobacco media coverage from mass and social media sources predicts daily YYA cigarette smoking intentions measured in a rolling nationally representative phone survey (N = 11,847 on 1,147 days between May 2014 and June 2017). Past week anti-tobacco and pro-tobacco content from Twitter, newspapers, broadcast news, Associated Press, and web blogs made coherent scales (thetas = 0.77 and 0.79). Opportunities for exposure to anti-tobacco content in the past week predicted lower intentions to smoke (Odds ratio [OR] = 0.95, p < .05, 95% confidence interval [CI] = 0.91-1.00). The effect was stronger among current smokers than among nonsmokers (interaction OR = 0.88, p < .05, 95% CI = 0.77-1.00). These findings support specific effects of anti-tobacco media coverage and illustrate a productive general approach to conceptualizing and assessing effects in the complex media environment.

10.
Nat Med ; 28(2): 251-259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145305

RESUMO

Tay-Sachs disease (TSD) is an inherited neurological disorder caused by deficiency of hexosaminidase A (HexA). Here, we describe an adeno-associated virus (AAV) gene therapy expanded-access trial in two patients with infantile TSD (IND 18225) with safety as the primary endpoint and no secondary endpoints. Patient TSD-001 was treated at 30 months with an equimolar mix of AAVrh8-HEXA and AAVrh8-HEXB administered intrathecally (i.t.), with 75% of the total dose (1 × 1014 vector genomes (vg)) in the cisterna magna and 25% at the thoracolumbar junction. Patient TSD-002 was treated at 7 months by combined bilateral thalamic (1.5 × 1012 vg per thalamus) and i.t. infusion (3.9 × 1013 vg). Both patients were immunosuppressed. Injection procedures were well tolerated, with no vector-related adverse events (AEs) to date. Cerebrospinal fluid (CSF) HexA activity increased from baseline and remained stable in both patients. TSD-002 showed disease stabilization by 3 months after injection with ongoing myelination, a temporary deviation from the natural history of infantile TSD, but disease progression was evident at 6 months after treatment. TSD-001 remains seizure-free at 5 years of age on the same anticonvulsant therapy as before therapy. TSD-002 developed anticonvulsant-responsive seizures at 2 years of age. This study provides early safety and proof-of-concept data in humans for treatment of patients with TSD by AAV gene therapy.


Assuntos
Doença de Tay-Sachs , Anticonvulsivantes , Dependovirus/genética , Terapia Genética , Humanos , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/terapia
11.
Health Commun ; 37(1): 29-38, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32900231

RESUMO

Media coverage can impact support for health policies and, ultimately, compliance with those policies. Prior research found consistent, high support for Tobacco 21 policies, which raise the minimum legal age of tobacco purchase to 21, among adults and nonsmoking youth. However, a recent study found support (i.e., agreement with the statement: "The legal age to buy tobacco cigarettes should be increased from 18 to 21") among 13-20-year-old smokers increased from 2014 until mid-2016 and then declined steadily through mid-2017. To assess whether media coverage could be related to young smokers' changing support, we conducted an exploratory content analysis to identify texts about Tobacco 21 in a large corpus of tobacco texts (N = 135,691) published in four popular media sources from 2014 to 2017. For this content analysis, we developed a novel methodological approach that combined supervised and unsupervised machine learning methods and could be useful in other areas of communication research. We found that the prevalence of Tobacco 21 media coverage and Tobacco 21 support among young smokers exhibited similar temporal patterns for much of the study period. These findings highlight the need for continued research into the effects of media coverage on Tobacco 21 support among young smokers, a group that must comply with Tobacco 21 policies in order to ensure maximum effectiveness. This research is of particular utility following the 2019 passage of a federal Tobacco 21 regulation, as the public health impact of this regulation could be limited by low public support, and thus low rates of policy compliance.


Assuntos
Nicotiana , Produtos do Tabaco , Adolescente , Adulto , Humanos , Política Pública , Fumantes , Aprendizado de Máquina não Supervisionado , Adulto Jovem
12.
Pharmacotherapy ; 42(1): 53-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767652

RESUMO

INTRODUCTION: Filgrastim is a human granulocyte colony-stimulating factor (G-CSF). There are limited data on dosing filgrastim in obesity. The objective of this study was to compare filgrastim pharmacokinetic parameters for morbidly obese and non-obese patients after a single subcutaneous dose of filgrastim dosed per actual body weight. METHODS: This prospective, matched-pair study (NCT01719432) included patients ≥18 years of age, receiving filgrastim at 5 µg/kg with a weight >190% of their ideal body weight (IBW) for "morbidly obese" patients or within 80%-124% of IBW for matched-control patients. The control group was prospectively matched for age (within 10 years), degree of neutropenia, and gender. Filgrastim doses were not rounded to vial size, to allow more accurate assessment of exposure. Blood samples were collected at 0 (prior to dose), 2, 4, 6, 8, 12, and 24 h after the first subcutaneous administration of filgrastim. RESULTS: A total of 30 patients were enrolled in this prospective pharmacokinetic study, with 15 patients assigned to each arm. Non-compartmental analysis showed that the systemic clearance (Cl) was 0.111 ± 0.041 ml/min in the morbidly obese group versus 0.124 ± 0.045 ml/min in the non-obese group (p = 0.44). Additionally, the mean area under the curve (AUC0-24h ) was 49.3 ± 13.9 ng/ml × min in the morbidly obese group versus 46.3 ± 16.8 ng/mL x min in the non-obese group (p = 0.6). No differences were seen in maximum concentrations (Cmax ) between the two groups (morbidly obese: 48.1 ± 14.7 ng/ml vs. non-obese: 49.2 ± 20.7 ng/ml (p = 0.87)). The morbidly obese group had a numerically higher, but not statistically significant, increase in time to maximum concentration (Tmax ) compared to the non-obese group (544 ± 145 min vs 436 ± 156 min (p = 0.06), respectively). CONCLUSION: Calculating subcutaneous filgrastim doses using actual body weight appears to produce similar systemic exposure in morbidly obese and non-obese patients with severe neutropenia.


Assuntos
Filgrastim , Fator Estimulador de Colônias de Granulócitos , Obesidade Mórbida , Adulto , Estudos de Casos e Controles , Feminino , Filgrastim/farmacocinética , Fator Estimulador de Colônias de Granulócitos/farmacocinética , Humanos , Masculino , Neutropenia/epidemiologia , Obesidade Mórbida/tratamento farmacológico , Estudos Prospectivos
13.
Free Radic Biol Med ; 175: 226-235, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496224

RESUMO

B-cell acute lymphoblastic leukemia (ALL) affects both pediatric and adult patients. Chemotherapy resistant tumor cells that contribute to minimal residual disease (MRD) underlie relapse and poor clinical outcomes in a sub-set of patients. Targeting mitochondrial oxidative phosphorylation (OXPHOS) in the treatment of refractory leukemic cells is a potential novel approach to sensitizing tumor cells to existing standard of care therapeutic agents. In the current study, we have expanded our previous investigation of the mitoNEET ligand NL-1 in the treatment of ALL to interrogate the functional role of the mitochondrial outer membrane protein mitoNEET in B-cell ALL. Knockout (KO) of mitoNEET (gene: CISD1) in REH leukemic cells led to changes in mitochondrial ultra-structure and function. REH cells have significantly reduced OXPHOS capacity in the KO cells coincident with reduction in electron flow and increased reactive oxygen species. In addition, we found a decrease in lipid content in KO cells, as compared to the vector control cells was observed. Lastly, the KO of mitoNEET was associated with decreased proliferation as compared to control cells when exposed to the standard of care agent cytarabine (Ara-C). Taken together, these observations suggest that mitoNEET is essential for optimal function of mitochondria in B-cell ALL and may represent a novel anti-leukemic drug target for treatment of minimal residual disease.


Assuntos
Proteínas Mitocondriais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfócitos B/metabolismo , Criança , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredução , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
14.
Sci Rep ; 11(1): 15840, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349149

RESUMO

B-cell acute lymphoblastic leukemia (ALL) is characterized by accumulation of immature hematopoietic cells in the bone marrow, a well-established sanctuary site for leukemic cell survival during treatment. While standard of care treatment results in remission in most patients, a small population of patients will relapse, due to the presence of minimal residual disease (MRD) consisting of dormant, chemotherapy-resistant tumor cells. To interrogate this clinically relevant population of treatment refractory cells, we developed an in vitro cell model in which human ALL cells are grown in co-culture with human derived bone marrow stromal cells or osteoblasts. Within this co-culture, tumor cells are found in suspension, lightly attached to the top of the adherent cells, or buried under the adherent cells in a population that is phase dim (PD) by light microscopy. PD cells are dormant and chemotherapy-resistant, consistent with the population of cells that underlies MRD. In the current study, we characterized the transcriptional signature of PD cells by RNA-Seq, and these data were compared to a published expression data set derived from human MRD B-cell ALL patients. Our comparative analyses revealed that the PD cell population is markedly similar to the MRD expression patterns from the primary cells isolated from patients. We further identified genes and key signaling pathways that are common between the PD tumor cells from co-culture and patient derived MRD cells as potential therapeutic targets for future studies.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Mesenquimais/patologia , Neoplasia Residual/patologia , Osteoblastos/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Transcriptoma , Técnicas de Cocultura , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Neoplasia Residual/tratamento farmacológico , Neoplasia Residual/genética , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , RNA-Seq
15.
J Infect Dis ; 224(6): 976-982, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34191025

RESUMO

BACKGROUND: Serial screening is critical for restricting spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by facilitating timely identification of infected individuals to interrupt transmission. Variation in sensitivity of different diagnostic tests at different stages of infection has not been well documented. METHODS: In a longitudinal study of 43 adults newly infected with SARS-CoV-2, all provided daily saliva and nasal swabs for quantitative reverse transcription polymerase chain reaction (RT-qPCR), Quidel SARS Sofia antigen fluorescent immunoassay (FIA), and live virus culture. RESULTS: Both RT-qPCR and Quidel SARS Sofia antigen FIA peaked in sensitivity during the period in which live virus was detected in nasal swabs, but sensitivity of RT-qPCR tests rose more rapidly prior to this period. We also found that serial testing multiple times per week increases the sensitivity of antigen tests. CONCLUSIONS: RT-qPCR tests are more effective than antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (given timely results reporting). All tests showed >98% sensitivity for identifying infected individuals if used at least every 3 days. Daily screening using antigen tests can achieve approximately 90% sensitivity for identifying infected individuals while they are viral culture positive.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , Testes Diagnósticos de Rotina , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Animais , Antígenos Virais/análise , Chlorocebus aethiops , Feminino , Humanos , Estudos Longitudinais , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Saliva , Sensibilidade e Especificidade , Células Vero , Adulto Jovem
16.
Nat Commun ; 12(1): 2606, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972557

RESUMO

Understanding resistance mechanisms to targeted therapies and immune checkpoint blockade in mutant KRAS lung cancers is critical to developing novel combination therapies and improving patient survival. Here, we show that MEK inhibition enhanced PD-L1 expression while PD-L1 blockade upregulated MAPK signaling in mutant KRAS lung tumors. Combined MEK inhibition with anti-PD-L1 synergistically reduced lung tumor growth and metastasis, but tumors eventually developed resistance to sustained combinatorial therapy. Multi-platform profiling revealed that resistant lung tumors have increased infiltration of Th17 cells, which secrete IL-17 and IL-22 cytokines to promote lung cancer cell invasiveness and MEK inhibitor resistance. Antibody depletion of IL-17A in combination with MEK inhibition and PD-L1 blockade markedly reduced therapy-resistance in vivo. Clinically, increased expression of Th17-associated genes in patients treated with PD-1 blockade predicted poorer overall survival and response in melanoma and predicated poorer response to anti-PD1 in NSCLC patients. Here we show a triple combinatorial therapeutic strategy to overcome resistance to combined MEK inhibitor and PD-L1 blockade.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Th17/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno B7-H1/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/imunologia , Sinergismo Farmacológico , Feminino , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/imunologia , Metástase Neoplásica , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Th17/imunologia , Proteína Supressora de Tumor p53/metabolismo
17.
Cancer Res ; 81(5): 1398-1412, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33402388

RESUMO

The epithelial-to-mesenchymal transition (EMT) is a dynamic epigenetic reprogramming event that occurs in a subset of tumor cells and is an initiating step toward invasion and distant metastasis. The process is reversible and gives plasticity to cancer cells to survive under variable conditions, with the acquisition of cancer stem cell-like characteristics and features such as drug resistance. Therefore, understanding survival dependencies of cells along the phenotypic spectrum of EMT will provide better strategies to target the spatial and temporal heterogeneity of tumors and prevent their ability to bypass single-inhibitor treatment strategies. To address this, we integrated the data from a selective drug screen in epithelial and mesenchymal KRAS/p53 (KP)-mutant lung tumor cells with separate datasets including reverse-phase protein array and an in vivo shRNA dropout screen. These orthogonal approaches identified AXL and MEK as potential mesenchymal and epithelial cell survival dependencies, respectively. To capture the dynamicity of EMT, incorporation of a dual fluorescence EMT sensor system into murine KP lung cancer models enabled real-time analysis of the epigenetic state of tumor cells and assessment of the efficacy of single agent or combination treatment with AXL and MEK inhibitors. Both two- and three-dimensional culture systems and in vivo models revealed that this combination treatment strategy of MEK plus AXL inhibition synergistically killed lung cancer cells by specifically targeting each phenotypic subpopulation. In conclusion, these results indicate that cotargeting the specific vulnerabilities of EMT subpopulations can prevent EMT-mediated drug resistance, effectively controlling tumor cell growth and metastasis. SIGNIFICANCE: This study shows that a novel combination of MEK and AXL inhibitors effectively bypasses EMT-mediated drug resistance in KRAS/p53-mutant non-small cell lung cancer by targeting EMT subpopulations, thereby preventing tumor cell survival.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Células A549 , Animais , Benzimidazóis/administração & dosagem , Benzimidazóis/farmacologia , Benzocicloeptenos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
18.
Health Commun ; 36(4): 497-507, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31830827

RESUMO

Electronic cigarettes (e-cigarettes) are a controversial public health topic due to their increasing popularity among youth and the uncertainty about their risks and benefits. Researchers have started to assess the valence of media content about e-cigarette use, mostly using expert coding. The current study aims to offer a methodological framework and guideline when using crowdsourcing to rate the valence of e-cigarette media content. Specifically, we present (1) an experiment to determine rating instructions that would result in reliable valence ratings and (2) an analysis to identify the optimal number of raters needed to replicate these ratings. Specifically, we compared ratings produced by crowdsourced raters instructed to rate from several different perspectives (e.g., objective vs. subjective) and determined the instructions that led to reliable ratings. We then used bootstrapping methods and a set of criteria to identify the minimum number of raters needed to replicate these ratings. Results suggested that when rating e-cigarette valence, instructing raters to rate from their own subjective perspective produced reliable results, and nine raters were deemed the optimal number of raters. We expect these findings to inform future content analyses of e-cigarette valence. The study procedures can be applied to crowdsourced content analyses of other health-related media content to determine appropriate rating instructions and the number of raters.


Assuntos
Meios de Comunicação , Crowdsourcing , Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Adolescente , Humanos
19.
Front Immunol ; 11: 568217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329532

RESUMO

Background: Congenital cytomegalovirus (cCMV) infection is the most common infection acquired before birth and from which about 20% of infants develop permanent neurodevelopmental effects regardless of presence or absence of symptoms at birth. Viral escape from host immune control may be a mechanism of CMV transmission and infant disease severity. We sought to identify and compare CMV epitopes recognized by mother-infant pairs. We also hypothesized that if immune escape were occurring, then one pattern of longitudinal CD8 T cell responses restricted by shared HLA alleles would be maternal loss (by viral escape) and infant gain (by viral reversion to wildtype) of CMV epitope recognition. Methods: The study population consisted of 6 women with primary CMV infection during pregnancy and their infants with cCMV infection. CMV UL83 and UL123 peptides with known or predicted restriction by maternal MHC class I alleles were identified, and a subset was selected for testing based on several criteria. Maternal or infant cells were stimulated with CMV peptides in the IFN-γ ELISpot assay. Results: Overall, 14 of 25 (56%; 8 UL83 and 6 UL123) peptides recognized by mother-infant pairs were not previously reported as CD8 T cell epitopes. Of three pairs with longitudinal samples, one showed maternal loss and infant gain of responses to a CMV epitope restricted by a shared HLA allele. Conclusions: CD8 T cell responses to multiple novel CMV epitopes were identified, particularly in infants. Moreover, the hypothesized pattern of CMV immune escape was observed in one mother-infant pair. These findings emphasize that knowledge of paired CMV epitope recognition allows exploration of viral immune escape that may operate within the maternal-fetal system. Our work provides rationale for future studies of this potential mechanism of CMV transmission during pregnancy or clinical outcomes of infants with cCMV infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Complicações Infecciosas na Gravidez/imunologia , Feminino , Humanos , Evasão da Resposta Imune , Lactente , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Mães , Peptídeos/imunologia , Gravidez
20.
Nicotine Tob Res ; 22(10): 1891-1900, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32428214

RESUMO

INTRODUCTION: As media exposure can influence people's opinions and perceptions about vaping and smoking, analyzing the valence of media content about tobacco products (ie, overall attitude toward tobacco, cigars, electronic cigarettes, etc.) is an important issue. This study advances the field by analyzing a large amount of media content about multiple tobacco products across six different media sources. AIMS AND METHODS: From May 2014 to December 2017, we collected all English-language media items about tobacco products that U.S. young people might see from mass media and websites (long-form) and social media (Twitter and YouTube). We used supervised machine learning to develop validated algorithms to label the valence of these media items. Using the labeled results, we examined the impact of product type (e-cigarettes vs. other tobacco products), source (long-form vs. social media), and time (by month) on the valence of coverage. RESULTS: We obtained 152 886 long-form media texts (20% with more than a passing mention), nearly 86 million tweets, and 12 262 YouTube videos about tobacco products. Most long-form media content opposed, while most social media coverage supported, the use of e-cigarettes and other tobacco products. Over time, within-source valence proportions were stable, though in aggregate, the amount of media coverage against the use of tobacco products decreased. CONCLUSIONS: This study describes the U.S. public communication environment about vaping and smoking for young people and offers a novel big data approach to analyzing media content. Results suggest that content has gradually become less negative toward the use of e-cigarettes and other tobacco products. IMPLICATIONS: This study is the first to examine how the valence of media coverage differs for e-cigarettes versus other tobacco products, across several media sources, and over time using a large corpus of media items. Unlike prior studies, these data allow us to draw conclusions about relative support and opposition for these two categories of products in a variety of media coverage because the same coding scheme was used across products and media sources.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Meios de Comunicação de Massa , Mídias Sociais , Produtos do Tabaco , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA