Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675224

RESUMO

Lipid nanoparticles (LNPs) have established their position as nonviral vectors for gene therapy. Tremendous efforts have been made to modulate the properties of LNPs to unleash their full clinical potential. Among the strategies being pursued, the layer-by-layer (LbL) technique has gained considerable attention in the biomedical field. Illuminated by our previous work, here we investigate if the LbL approach could be used to modify the LNP cores formulated with three different ionizable lipids: DODMA, MC3, and DODAP. Additionally, we wondered if more than three layers could be loaded onto LNPs without disrupting their gene transfection ability. Taking advantage of physicochemical analysis, as well as uptake and gene silencing studies, we demonstrate the feasibility of modifying the surface of LNPs with the LbL assembly. Precisely, we successfully modified three different LNPs using the layer-by-layer strategy which abrogated luciferase activity in vitro. Additionally, we constructed a 5×-layered HA-LNP containing the MC3 ionizable lipid which outperformed the 3×-layered counterpart in transfecting miRNA-181-5p to the pediatric GBM cell line, as a proof-of-concept in vitro experiment. The method used herein has been proven reproducible, of easy modification to adapt to different ionizable lipid-containing LNPs, and holds great potential for the translation of RNA-based therapeutic strategies.

2.
Biomaterials ; 302: 122341, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778056

RESUMO

Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer. Current pharmacological interventions marginally increase the 12-month overall survival of patients with GBM. Among the novel therapeutic strategies being pursued, micro-RNAs, a class of non-coding RNAs, are receiving considerable attention for their regulation of several pathways implicated in tumorigenesis and survival. Notably, microRNA-181a-5p (miR-181a) has consistently been reported to be downregulated in GBM clinical samples, and its overexpression negatively affects tumor growth both in vitro and in vivo. To improve the delivery of miR-181a to GBM cells, we sought to develop a modified lipid-based nanocarrier capable of encapsulating and delivering miR-181a to GBM cells in vitro and in vivo. Optimized ionizable-lipid containing lipid nanoparticles (LNP) were constructed by covering the miR-181a-loaded LNP with alternating layers of miR-181a, poly-l-arginine and hyaluronic acid through the layer-by-layer technique. The resulting hyaluronan-decorated lipid nanoparticles (HA-LNP) targeted GBM cells more efficiently than non-modified LNP and mediated siRNA and miRNA transfection in vitro. Finally, delivery of miR-181a by HA-LNP induced significant cellular death of U87 GBM cells in vitro and delayed tumor growth in an in vivo subcutaneous tumor model.


Assuntos
Glioblastoma , MicroRNAs , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Ácido Hialurônico , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Lipídeos , Proliferação de Células
3.
Cells ; 11(10)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35626707

RESUMO

Endothelial dysfunction plays a critical role in many human angiogenesis-related diseases, including cancer and retinopathies. Small non-coding microRNAs (miRNAs) repress gene expression at the post-transcriptional level. They are critical for endothelial cell gene expression and function and are involved in many pathophysiological processes. The miR-181 family is one of the essential angiogenic regulators. This review summarizes the current state of knowledge of the role of miR-181 family members in endothelial cell dysfunction, with emphasis on their pathophysiological roles in aberrant angiogenesis. The actions of miR-181 members are summarized concerning their targets and associated major angiogenic signaling pathways in a cancer-specific context. Elucidating the underlying functional mechanisms of miR-181 family members that are dysregulated in endothelial cells or cancer cells is invaluable for developing miRNA-based therapeutics for angiogenesis-related diseases such as retinopathies, angiogenic tumors, and cancer. Finally, potential clinical applications of miR-181 family members in anti-angiogenic tumor therapy are discussed.


Assuntos
MicroRNAs , Doenças Vasculares , Células Endoteliais/metabolismo , Humanos , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Transdução de Sinais , Doenças Vasculares/metabolismo
4.
Anticancer Agents Med Chem ; 22(5): 968-977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34170812

RESUMO

BACKGROUND: Target treatment using site-specific nanosystems is a hot topic for treating several diseases, especially cancer. OBJECTIVE: The study was set out to develop site-specific liposomes using ConcanavalinA (ConA) to target ß- lapachone(ß-lap) to human breast cancer cells. METHODS: Liposomes were prepared and characterized according to diameter size, zeta potential, ConA conjugation(%) and ß-lap encapsulation efficiency (%). Isothermal Titration Calorimetry evaluated the binding energy between the biomolecules, which compose of the liposomes. ConA avidity was assessed before and after conjugation. Cytotoxicity was evaluated, and fluorescence microscopy was performed to investigate the influence of ConA influenced on MCF-7 uptake. RESULTS: Uncoated and ConA-coated liposomes presented size, and zeta potential values from 97.46 ± 2.01 to 152.23 ± 2.73 nm, and -6.83 ± 0.28 to -17.23 ±0.64 mV, respectively. Both ConA conjugation and ß-lap encapsulation efficiency were approximately 100%. The favorable and spontaneous process confirmed the binding between ConA and the lipid. Hemagglutination assay confirmed ConA avidity once Lipo-ConA and Lipo-PEG-ConA were able to hemagglutinate the red blood cells at 128-1 and 256-1, respectively. Lipo-ConA was not cytotoxic, and the site-specific liposomes presented the highest toxicity. ConA-coated liposomes were more internalized by MCF7 than uncoated-liposomes. CONCLUSION: Therefore, the presence of ConA on the surface of liposomes influenced MCF7 uptake, in that way could be used as a promising site-specific system to target ß-lap to cancer cells.


Assuntos
Neoplasias da Mama , Naftoquinonas , Neoplasias da Mama/tratamento farmacológico , Concanavalina A , Feminino , Humanos , Lipossomos/química , Naftoquinonas/química
5.
Int J Pharm ; 589: 119824, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32861768

RESUMO

Survivin stands out as one of the most specific cancer targets discovered to date. Although single inhibition, e.g. through small interfering RNA (siRNA), has shown modest results in clinical trials, its combination with drugs holds promise to sensitize cancer cells to chemotherapeutics. In this study, we propose a sequential treatment of siRNA survivin followed by chemotherapy. Firstly, we demonstrated that siRNA-loaded switchable lipid nanoparticles (siLNP) silence survivin in a panel of cancer cell lines. Subsequently, we selected retinoblastoma (RB) as our model to screen four chemotherapeutic agents: carboplatin, topotecan, melphalan or teniposide. The effect of drugs on survivin expression and caspase-3 was investigated by RT-qPCR. The best drug combination was selected measuring the viability, survivin expression and the selectivity of the treatment. Our stepwise method revealed that siRNA delivery by switchable LNP sensitized Y79, but not the healthy APRE-19 cell line, to carboplatin and melphalan cytotoxicity. This ability was validated on primary human RB cells. Finally, the distinct behavior of the drugs demonstrated that a diligent screening of drugs should be envisioned when looking for synergy with survivin. Our sequential approach highlighted carboplatin and melphalan as agents to be investigated in future survivin-associated in vivo testing to tackle RB.


Assuntos
Neoplasias da Retina , Retinoblastoma , Apoptose , Carboplatina , Linhagem Celular Tumoral , Humanos , Proteínas Inibidoras de Apoptose/genética , Melfalan , RNA Interferente Pequeno , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Survivina/genética
6.
Int J Pharm ; 578: 119078, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31988037

RESUMO

Gene therapy is a promising tool for the treatment of various cancers but is hindered by the physico-chemical properties of siRNA and needs a suitable vector for the delivery of siRNA to the target tissue. Bile acid-based block copolymers offers certain advantages for the loading and delivery of siRNA since they can efficiently complex siRNA and bile acids are biocompatible endogenous molecules. In this study, we demonstrate the use of lipids as co-surfactants for the preparation of mixed micelles to improve the siRNA delivery of cholic acid-based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were polymerized on the surface of cholic acid to afford a star-shaped block copolymer with four arms (CA-PAGE-b-PEG)4. The allyl groups of PAGE were functionalized to bear primary or tertiary amines and folic acid was grafted onto the PEG chain end to increase cell uptake. (CA-PAGE-b-PEG)4 functionalized with either primary or tertiary amines show high siRNA complexation with close to 100% complexation at N/P ratio of 8. Uniform aggregates with diameters between 181 and 188 nm were obtained. DOPE, DSPE-PEG2k, and DSPE-PEG5k lipids were added as co-surfactants to help stabilize the nanoparticles in the cell culture media. Mixed micelles had high siRNA loading with close to 100% functionalization at N/P ratio of 16 and diameters ranging from 153 to 221 nm. The presence of lipids in the mixed micelles improved cell uptake with a concomitant siRNA transfection in HeLa and HeLa-GFP model cells, respectively.


Assuntos
Ácido Cólico/administração & dosagem , Micelas , RNA Interferente Pequeno/administração & dosagem , Ácido Cólico/química , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/química , Terapia Genética , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Fosfatidiletanolaminas/administração & dosagem , Fosfatidiletanolaminas/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , RNA Interferente Pequeno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA