Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Amyloid ; 29(4): 255-262, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35575118

RESUMO

BACKGROUND: ß2-microglobulin amyloidosis was first described in the 1980s as a protein deposition disease associated with long-term haemodialysis. More recently, two inherited forms resulting from separate point mutations in the ß2-microglobulin gene have been identified. In this report, we detail a novel ß2M variant, P32L, caused by a unique dinucleotide mutation that is linked to systemic hereditary ß2-microglobulin amyloidosis. METHODS: Three family members from a Portuguese kinship featured cardiomyopathy, requiring organ transplantation in one case, along with soft tissue involvement; other involvements included gastrointestinal, neuropathic and sicca syndrome. In vitro studies with recombinant P32L, P32G, D76N and wild-type ß2-microglobulin were undertaken to compare the biophysical properties of the proteins. RESULTS: The P32L variant was caused by the unique heterozygous dinucleotide mutation c.154_155delinsTT. Amyloid disease featured lowered serum ß2-microglobulin levels with near equal amounts of circulating P32L and wild-type proteins; amyloid deposits were composed exclusively of P32L variant protein. In vitro studies of P32L demonstrated thermodynamic and chemical instability and enhanced susceptibility to proteolysis with rapid formation of pre-fibrillar oligomeric structures by N- and C-terminally truncated species under physiological conditions. CONCLUSIONS: This work provides both clinical and experimental evidence supporting the critical role of P32 residue replacement in ß2M amyloid fibrillogenesis.


Assuntos
Amiloidose Familiar , Amiloidose , Humanos , Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose Familiar/genética , Microglobulina beta-2/metabolismo , Prolina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA