Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 25(19): 2591-6, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26412126

RESUMO

Centriole duplication is coordinated such that a single round of duplication occurs during each cell cycle. Disruption of this synchrony causes defects including supernumerary centrosomes in cancer and perturbed ciliary signaling [1-5]. To preserve the normal number of centrioles, the level, localization, and post-translational modification of centriole proteins is regulated so that, when centriole protein expression and/or activity are increased, centrioles self-assemble. Assembly is initiated by the formation of the cartwheel structure that comprises the base of centrioles [6-11]. SAS-6 constitutes the cartwheel, and SAS-6 levels remain low until centriole assembly is initiated at S phase onset [3, 12, 13]. CEP135 physically links to SAS-6 near the site of microtubule nucleation and binds to CPAP for triplet microtubule formation [13, 14]. We identify two distinct protein isoforms of CEP135 that antagonize each other to modulate centriole duplication: full-length CEP135 (CEP135(full)) promotes new assembly, whereas a short isoform, CEP135(mini), represses it. CEP135(mini) represses centriole duplication by limiting the centriolar localization of CEP135(full) binding proteins (SAS-6 and CPAP) and the pericentriolar localization of γ-tubulin. The CEP135 isoforms exhibit distinct and complementary centrosomal localization during the cell cycle. CEP135(mini) protein decreases from centrosomes upon anaphase onset. We suggest that the decrease in CEP135(mini) from centrosomes promotes centriole assembly. The repression of centriole duplication by a splice isoform of a protein that normally promotes it serves as a novel mechanism to limit centriole duplication.


Assuntos
Proteínas de Transporte/metabolismo , Centríolos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Centríolos/genética , Centrossomo/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo , Ligação Proteica , Isoformas de Proteínas , Splicing de RNA , Fase S , Tubulina (Proteína)/metabolismo
2.
J Cell Sci ; 126(Pt 15): 3441-51, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23704354

RESUMO

Basal bodies and centrioles are conserved microtubule-based organelles the improper assembly of which leads to a number of diseases, including ciliopathies and cancer. Tubulin family members are conserved components of these structures that are integral to their proper formation and function. We have identified the ε-tubulin gene in Tetrahymena thermophila and detected the protein, through fluorescence of a tagged allele, to basal bodies. Immunoelectron microscopy has shown that ε-tubulin localizes primarily to the core microtubule scaffold. A complete genomic knockout of ε-tubulin has revealed that it is an essential gene required for the assembly and maintenance of the triplet microtubule blades of basal bodies. We have conducted site-directed mutagenesis of the ε-tubulin gene and shown that residues within the nucleotide-binding domain, longitudinal interacting domains, and C-terminal tail are required for proper function. A single amino acid change of Thr150, a conserved residue in the nucleotide-binding domain, to Val is a conditional mutation that results in defects in the spatial and temporal assembly of basal bodies as well as their stability. We have genetically separated functions for the domains of ε-tubulin and identified a novel role for the nucleotide-binding domain in the regulation of basal body assembly and stability.


Assuntos
Corpos Basais/fisiologia , Infecções por Cilióforos/metabolismo , Tetrahymena thermophila/fisiologia , Tubulina (Proteína)/fisiologia , Corpos Basais/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Centríolos/genética , Centríolos/metabolismo , Infecções por Cilióforos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
3.
PLoS One ; 8(1): e53940, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23320108

RESUMO

Centrioles and basal bodies are essential for a variety of cellular processes that include the recruitment of proteins to these structures for both centrosomal and ciliary function. This recruitment is compromised when centriole/basal body assembly is defective. Mutations that cause basal body assembly defects confer supersensitivity to Taxol. These include bld2, bld10, bld12, uni3, vfl1, vfl2, and vfl3. Flagellar motility mutants do not confer sensitivity with the exception of mutations in the p60 (pf19) and p80 (pf15) subunits of the microtubule severing protein katanin. We have identified additional pf15 and bld2 (ε-tubulin) alleles in screens for Taxol sensitivity. Null pf15 and bld2 alleles are viable and are not essential genes in Chlamydomonas. Analysis of double mutant strains with the pf15-3 and bld2-6 null alleles suggests that basal bodies in Chlamydomonas may recruit additional proteins beyond katanin that affect spindle microtubule stability. The bld2-5 allele is a hypomorphic allele and its phenotype is modulated by nutritional cues. Basal bodies in bld2-5 cells are missing proximal ends. The basal body mutants show aberrant localization of an epitope-tagged p80 subunit of katanin. Unlike IFT proteins, katanin p80 does not localize to the transition fibers of the basal bodies based on an analysis of the uni1 mutant as well as the lack of colocalization of katanin p80 with IFT74. We suggest that the triplet microtubules are likely to play a key role in katanin p80 recruitment to the basal body of Chlamydomonas rather than the transition fibers that are needed for IFT localization.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Microtúbulos/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Algas/genética , Centríolos/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Resistência a Medicamentos/genética , Katanina , Microtúbulos/genética , Microtúbulos/ultraestrutura , Mutação , Paclitaxel/farmacologia
4.
Cytoskeleton (Hoboken) ; 69(8): 577-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22573610

RESUMO

In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD.


Assuntos
Axonema/ultraestrutura , Chlamydomonas/ultraestrutura , Cílios/ultraestrutura , Flagelos/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Axonema/metabolismo , Chlamydomonas/metabolismo , Cílios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Humanos , Síndrome de Kartagener/patologia
5.
Nat Cell Biol ; 10(6): 665-75, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18500339

RESUMO

Separation of duplicated centrosomes (spindle-pole bodies or SPBs in yeast) is a crucial step in the biogenesis of the mitotic spindle. In vertebrates, centrosome separation requires the BimC family kinesin Eg5 and the activities of Cdk1 and polo kinase; however, the roles of these kinases are not fully understood. In Saccharomyces cerevisiae, SPB separation also requires activated Cdk1 and the plus-end kinesins Cin8 (homologous to vertebrate Eg5) and Kip1. Here we report that polo kinase has a role in the separation of SPBs. We show that adequate accumulation of Cin8 and Kip1 requires inactivation of the anaphase-promoting complex-activator Cdh1 through sequential phosphorylation by Cdk1 and polo kinase. In this process, Cdk1 functions as a priming kinase in that Cdk1-mediated phosphorylation creates a binding site for polo kinase,which further phosphorylates Cdh1. Thus, Cdh1 inactivation through the synergistic action of Cdk1 and polo kinase provides a new model for inactivation of cell-cycle effectors.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático , Ciclossomo-Complexo Promotor de Anáfase , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Cdh1 , Ciclo Celular , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Modelos Genéticos , Proteínas Motores Moleculares , Fosforilação , Proteínas Repressoras/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Quinase 1 Polo-Like
6.
Genes Dev ; 22(1): 91-105, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18086858

RESUMO

beta-Catenin plays important roles in cell adhesion and gene transcription, and has been shown recently to be essential for the establishment of a bipolar mitotic spindle. Here we show that beta-catenin is a component of interphase centrosomes and that stabilization of beta-catenin, mimicking mutations found in cancers, induces centrosome splitting. Centrosomes are held together by a dynamic linker regulated by Nek2 kinase and its substrates C-Nap1 (centrosomal Nek2-associated protein 1) and Rootletin. We show that beta-catenin binds to and is phosphorylated by Nek2, and is in a complex with Rootletin. In interphase, beta-catenin colocalizes with Rootletin between C-Nap1 puncta at the proximal end of centrioles, and this localization is dependent on C-Nap1 and Rootletin. In mitosis, when Nek2 activity increases, beta-catenin localizes to centrosomes at spindle poles independent of Rootletin. Increased Nek2 activity disrupts the interaction of Rootletin with centrosomes and results in binding of beta-catenin to Rootletin-independent sites on centrosomes, an event that is required for centrosome separation. These results identify beta-catenin as a component of the intercentrosomal linker and define a new function for beta-catenin as a key regulator of mitotic centrosome separation.


Assuntos
Centrossomo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , beta Catenina/metabolismo , Animais , Proteínas do Domínio Armadillo/metabolismo , Células Cultivadas , Centrossomo/enzimologia , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/metabolismo , Cães , Humanos , Interfase , Quinases Relacionadas a NIMA , Proteínas/análise , Proteínas/metabolismo , beta Catenina/análise , tRNA Metiltransferases
7.
RNA ; 12(1): 94-101, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16373495

RESUMO

Retroviruses and retrotransposons assemble intracellular immature core particles around a RNA genome, and nascent particles collect in association with membranes or as intracellular clusters. How and where genomic RNA are identified for retrovirus and retrotransposon assembly, and how translation and assembly processes are coordinated is poorly understood. To understand this process, the subcellular localization of Ty3 RNA and capsid proteins and virus-like particles was investigated. We demonstrate that mRNAs, proteins, and virus-like particles of the yeast Ty3 retrotransposon accumulate in association with cytoplasmic P-bodies, which are sites of mRNA translation repression, storage, and degradation. Deletions of genes encoding P-body proteins decreased Ty3 transposition and caused changes in the pattern of Ty3 foci, underscoring the biological significance of the association of Ty3 virus-like protein components and P-bodies. These results suggest the hypothesis that P-bodies may serve to segregate translation and assembly functions of the Ty3 genomic RNA to promote assembly of virus-like particles. Because Ty3 has features of a simple retrovirus and P-body functions are conserved between yeast and metazoan organisms, these findings may provide insights into host factors that facilitate retrovirus assembly.


Assuntos
Corpos de Inclusão/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos/genética , Retroviridae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Vírion , Montagem de Vírus , DNA Polimerase Dirigida por RNA/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência
8.
Mol Biol Cell ; 16(3): 1178-88, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15635095

RESUMO

Meiotic chromosome segregation leads to the production of haploid germ cells. During meiosis I (MI), the paired homologous chromosomes are separated. Meiosis II (MII) segregation leads to the separation of paired sister chromatids. In the budding yeast Saccharomyces cerevisiae, both of these divisions take place in a single nucleus, giving rise to the four-spored ascus. We have modeled the microtubules in 20 MI and 15 MII spindles by using reconstruction from electron micrographs of serially sectioned meiotic cells. Meiotic spindles contain more microtubules than their mitotic counterparts, with the highest number in MI spindles. It is possible to differentiate between MI versus MII spindles based on microtubule numbers and organization. Similar to mitotic spindles, kinetochores in either MI or MII are attached by a single microtubule. The models indicate that the kinetochores of paired homologous chromosomes in MI or sister chromatids in MII are separated at metaphase, similar to mitotic cells. Examination of both MI and MII spindles reveals that anaphase A likely occurs in addition to anaphase B and that these movements are concurrent. This analysis offers a structural basis for considering meiotic segregation in yeast and for the analysis of mutants defective in this process.


Assuntos
Cromossomos Fúngicos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/química , Fuso Acromático/ultraestrutura , Anáfase , Núcleo Celular/metabolismo , Cromátides/ultraestrutura , Segregação de Cromossomos , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/química , Haploidia , Processamento de Imagem Assistida por Computador , Cinetocoros/metabolismo , Meiose , Microscopia Eletrônica , Microtúbulos/metabolismo , Modelos Teóricos , Mutação , Fenótipo
9.
J Virol ; 77(14): 7843-55, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12829824

RESUMO

The nonstructural proteins of hepatitis C virus (HCV) have been shown previously to localize to the endoplasmic reticulum (ER) when expressed singly or in the context of other HCV proteins. To determine whether the expression of HCV nonstructural proteins alters ER function, we tested the effect of expression of NS2/3/4A, NS4A, NS4B, NS4A/B, NS4B/5A, NS5A, and NS5B from genotype 1b HCV on anterograde traffic from the ER to the Golgi apparatus. Only the nominal precursor protein NS4A/B affected the rate of ER-to-Golgi traffic, slowing the rate of Golgi-specific modification of the vesicular stomatitis virus G protein expressed by transfection by approximately threefold. This inhibition of ER-to-Golgi traffic was not observed upon expression of the processed proteins NS4A and NS4B, singly or in combination. To determine whether secretion of other cargo proteins was inhibited by NS4A/B expression, we monitored the appearance of newly synthesized proteins on the cell surface in the presence and absence of NS4A/B expression; levels of all were reduced in the presence of NS4A/B. This reduction is also seen in cells that contain genome length HCV replicons: the rate of appearance of major histocompatibility complex class I (MHC-I) on the cell surface was reduced by three- to fivefold compared to that for a cured cell line. The inhibition of protein secretion caused by NS4A/B does not correlate with the ultrastructural changes leading to the formation a "membranous web" (D. Egger et al., J. Virol. 76:5974-5984, 2002), which can be caused by expression of NS4B alone. Inhibition of global ER-to-Golgi traffic could, by reducing cytokine secretion, MHC-I presentation, and transport of labile membrane proteins to the cell surface, have significant effects on the host immune response to HCV infection.


Assuntos
Hepacivirus/patogenicidade , Precursores de Proteínas/metabolismo , Proteínas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Membrana Celular/ultraestrutura , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Hepacivirus/classificação , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/virologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Membranas Intracelulares/ultraestrutura , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Eletrônica , Precursores de Proteínas/genética , Transporte Proteico , Transfecção , Células Tumorais Cultivadas , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA