Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38070147

RESUMO

BACKGROUND: We recently conducted a phase 2 trial (NCT028865685) evaluating intracranial efficacy of pembrolizumab for brain metastases (BM) of diverse histologies. Our study met its primary efficacy endpoint and illustrates that pembrolizumab exerts promising activity in a select group of patients with BM. Given the importance of aberrant vasculature in mediating immunosuppression, we explored the relationship between checkpoint inhibitor (ICI) efficacy and vascular architecture in the hopes of identifying potential mechanisms of intracranial ICI response or resistance for BM. METHODS: Using Vessel Architectural Imaging (VAI), a histologically validated quantitative metric for in vivo tumor vascular physiology, we analyzed dual echo DSC/DCE MRI for 44 patients on trial. Tumor and peri-tumor cerebral blood volume/flow, vessel size, arterial- and venous-dominance, and vascular permeability were measured before and after treatment with pembrolizumab. RESULTS: BM that progressed on ICI were characterized by a highly aberrant vasculature dominated by large-caliber vessels. In contrast, ICI-responsive BM possessed a more structurally balanced vasculature consisting of both small and large vessels, and there was a trend towards a decrease in under-perfused tissue, suggesting a reversal of the negative effects of hypoxia. In the peri-tumor region, development of smaller blood vessels, consistent with neo-angiogenesis, was associated with tumor growth before radiographic evidence of contrast enhancement on anatomical MRI. CONCLUSIONS: This study, one of the largest functional imaging studies for BM, suggests that vascular architecture is linked with ICI efficacy. Studies identifying modulators of vascular architecture, and effects on immune activity, are warranted and may inform future combination treatments.

2.
bioRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693537

RESUMO

Structurally and functionally aberrant vasculature is a hallmark of tumor angiogenesis and treatment resistance. Given the synergistic link between aberrant tumor vasculature and immunosuppression, we analyzed perfusion MRI for 44 patients with brain metastases (BM) undergoing treatment with pembrolizumab. To date, vascular-immune communication, or the relationship between immune checkpoint inhibitor (ICI) efficacy and vascular architecture, has not been well-characterized in human imaging studies. We found that ICI-responsive BM possessed a structurally balanced vascular makeup, which was linked to improved vascular efficiency and an immune-stimulatory microenvironment. In contrast, ICI-resistant BM were characterized by a lack of immune cell infiltration and a highly aberrant vasculature dominated by large-caliber vessels. Peri-tumor region analysis revealed early functional changes predictive of ICI resistance before radiographic evidence on conventional MRI. This study was one of the largest functional imaging studies for BM and establishes a foundation for functional studies that illuminate the mechanisms linking patterns of vascular architecture with immunosuppression, as targeting these aspects of cancer biology may serve as the basis for future combination treatments.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36998700

RESUMO

Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.

4.
Lancet Digit Health ; 1(3): e136-e147, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31448366

RESUMO

Background: Radiotherapy continues to be delivered uniformly without consideration of individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we queried the lung computed tomography (CT)-derived feature space to identify radiation sensitivity parameters that can predict treatment failure and hence guide the individualization of radiotherapy dose. Methods: We used a cohort-based registry of 849 patients with cancer in the lung treated with high dose radiotherapy using stereotactic body radiotherapy. We input pre-therapy lung CT images into a multi-task deep neural network, Deep Profiler, to generate an image fingerprint that primarily predicts time to event treatment outcomes and secondarily approximates classical radiomic features. We validated our findings in an independent study population (n = 95). Deep Profiler was combined with clinical variables to derive iGray, an individualized dose that estimates treatment failure probability to be <5%. Findings: Radiation treatments in patients with high Deep Profiler scores fail at a significantly higher rate than in those with low scores. The 3-year cumulative incidences of local failure were 20.3% (95% CI: 16.0-24.9) and 5.7% (95% CI: 3.5-8.8), respectively. Deep Profiler independently predicted local failure (hazard ratio 1.65, 95% 1.02-2.66, p = 0.04). Models that included Deep Profiler and clinical variables predicted treatment failures with a concordance index of 0.72 (95% CI: 0.67-0.77), a significant improvement compared to classical radiomics or clinical variables alone (p = <0.001 and <0.001, respectively). Deep Profiler performed well in an external study population (n = 95), accurately predicting treatment failures across diverse clinical settings and CT scanner types (concordance index = 0.77 [95% CI: 0.69-0.92]). iGray had a wide dose range (21.1-277 Gy, BED), suggested dose reductions in 23.3% of patients and can be safely delivered in the majority of cases. Interpretation: Our results indicate that there are image-distinct subpopulations that have differential sensitivity to radiotherapy. The image-based deep learning framework proposed herein is the first opportunity to use medical images to individualize radiotherapy dose.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Aprendizado Profundo , Doses de Radiação , Radiocirurgia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino
5.
PLoS One ; 8(1): e54959, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372803

RESUMO

Hematogeneous metastasis can occur via a cascade of circulating tumor cell adhesion events to the endothelial lining of the vasculature, i.e. the metastatic cascade. Interestingly, the pro-inflammatory cytokines IL-6 and TNF-α, which play an important role in potentiating the inflammatory cascade, are significantly elevated in metastatic breast cancer (BCa) patients. Despite their high metastatic potential, human breast carcinoma cells MDA-MB-231 lack interactions with E-selectin functionalized surfaces under physiological shear stresses. We hypothesized that human plasma, 3-D tumor spheroid culture, and cytokine-supplemented culture media could induce a phenotypic switch that allows BCa cells to interact with E-selectin coated surfaces under physiological flow. Flow cytometry, immunofluorescence imaging, and flow-based cell adhesion assay were utilized to investigate the phenotypic changes of MDA-MB-231 cells with various treatments. Our results indicate that plasma, IL-6, and TNF-α promote breast cancer cell growth as aggregates and induce adhesive recruitment of BCa cells on E-selectin coated surfaces under flow. 3-D tumor spheroid culture exhibits the most significant increases in the interactions between BCa and E-selectin coated surfaces by upregulating CD44V4 and sLe(x) expression. Furthermore, we show that IL-6 and TNF-α concentrations in blood may regulate the recruitment of BCa cells to the inflamed endothelium. Finally, we propose a mechanism that could explain the invasiveness of 'triple-negative' breast cancer cell line MDA-MB-231 via a positive feedback loop of IL-6 secretion and maintenance. Taken together, our results suggest that therapeutic approaches targeting cytokine receptors and adhesion molecules on cancer cells may potentially reduce metastatic load and improve current cancer treatments.


Assuntos
Citocinas/farmacologia , Mediadores da Inflamação/farmacologia , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/metabolismo , Fenótipo , Anti-Inflamatórios/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/sangue , Selectina E/metabolismo , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Mediadores da Inflamação/sangue , Interleucina-6/sangue , Interleucina-6/farmacologia , Metformina/farmacologia , Metástase Neoplásica , Oligossacarídeos/metabolismo , Antígeno Sialil Lewis X , Esferoides Celulares , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA