Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1335704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274095

RESUMO

Introduction: Helicobacter pylori is a bacterium that colonizes the gastric epithelium, which affects millions of people worldwide. H. pylori infection can lead to various gastrointestinal diseases, including gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Conventional antibiotic therapies face challenges due to increasing antibiotic resistance and patient non-compliance, necessitating the exploration of alternative treatment approaches. In this study, we focused on Hp0231 (DsbK), an essential component of the H. pylori Dsb (disulfide bond) oxidative pathway, and investigated peptide-based inhibition as a potential therapeutic strategy. Methods: Three inhibitory peptides designed by computational modeling were evaluated for their effectiveness using a time-resolved fluorescence assay. We also examined the binding affinity between Hp0231 and the peptides using microscale thermophoresis. Results and discussion: Our findings demonstrate that in silico-designed synthetic peptides can effectively inhibit Hp0231-mediated peptide oxidation. Targeting Hp0231 oxidase activity could attenuate H. pylori virulence without compromising bacterial viability. Therefore, peptide-based inhibitors of Hp0231 could be candidates for the development of new targeted strategy, which does not influence the composition of the natural human microbiome, but deprive the bacterium of its pathogenic properties.

2.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430928

RESUMO

Pharmacotherapy for inflammatory bowel disease (IBD) is difficult, and some patients do not respond to currently available treatments. Therefore, the discovery of novel anti-IBD agents is imperative. Our aim was the synthesis of lipidated analogs of sialorphin and the in vitro characterization of their effect on the degradation of Met-enkephalin by neutral endopeptidase (NEP). We also investigated in vivo whether the most active inhibitor (peptide VIII) selected in the in vitro studies could be a potential candidate for the treatment of colitis. Peptides were synthesized by the solid-phase method. Molecular modeling technique was used to explain the effect of fatty acid chain length in sialorphin analogs on the ligand-enzyme interactions. The anti-inflammatory effect was evaluated in the dextran sulphate sodium (DSS)-induced model of colitis in mice. Peptide VIII containing stearic acid turned out to be in vitro the strongest inhibitor of NEP. We have also shown that the length of the chain of stearic acid fits the size of the grove of NEP. Peptides VII and VIII exhibited in vivo similar anti-inflammatory activity. Our results suggest that lipidation of sialorphin molecule is a promising direction in the search for NEP inhibitors that protect enkephalins.


Assuntos
Colite , Neprilisina , Camundongos , Animais , Encefalinas/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação
3.
Microbiol Spectr ; 10(5): e0165722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094301

RESUMO

This work reports detailed characteristics of the antimicrobial peptide Intestinalin (P30), which is derived from the LysC enzyme of Clostridium intestinale strain URNW. The peptide shows a broader antibacterial spectrum than the parental enzyme, showing potent antimicrobial activity against clinical strains of Gram-positive staphylococci and Gram-negative pathogens and causing between 3.04 ± 0.12 log kill for Pseudomonas aeruginosa PAO1 and 7.10 ± 0.05 log kill for multidrug-resistant Acinetobacter baumannii KPD 581 at a 5 µM concentration. Moreover, Intestinalin (P30) prevents biofilm formation and destroys 24-h and 72-h biofilms formed by Acinetobacter baumannii CRAB KPD 205 (reduction levels of 4.28 and 2.62 log CFU/mL, respectively). The activity of Intestinalin is combined with both no cytotoxicity and little hemolytic effect against mammalian cells. The nuclear magnetic resonance and molecular dynamics (MD) data show a high tendency of Intestinalin to interact with the bacterial phospholipid cell membrane. Although positively charged, Intestinalin resides in the membrane and aggregates into small oligomers. Negatively charged phospholipids stabilize peptide oligomers to form water- and ion-permeable pores, disrupting the integrity of bacterial cell membranes. Experimental data showed that Intestinalin interacts with negatively charged lipoteichoic acid (logK based on isothermal titration calorimetry, 7.45 ± 0.44), causes membrane depolarization, and affects membrane integrity by forming large pores, all of which result in loss of bacterial viability. IMPORTANCE Antibiotic resistance is rising rapidly among pathogenic bacteria, becoming a global public health problem that threatens the effectiveness of therapies for many infectious diseases. In this respect, antimicrobial peptides appear to be an interesting alternative to combat bacterial pathogens. Here, we report the characteristics of an antimicrobial peptide (of 30 amino acids) derived from the clostridial LysC enzyme. The peptide showed killing activity against clinical strains of Gram-positive and Gram-negative pathogens. Experimental data and computational modeling showed that this peptide forms transmembrane pores, directly engaging the negatively charged phospholipids of the bacterial cell membrane. Consequently, dissipation of the electrochemical gradient across cell membranes affects many vital processes, such as ATP synthesis, motility, and transport of nutrients. This kind of dysfunction leads to the loss of bacterial viability. Our firm conviction is that the presented study will be a helpful resource in searching for novel antimicrobial peptides that could have the potential to replace conventional antibiotics.


Assuntos
Antibacterianos , Bactérias , Peptídeos , Animais , Acinetobacter baumannii , Trifosfato de Adenosina , Aminoácidos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Membrana Celular , Mamíferos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Fosfolipídeos , Água
4.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744829

RESUMO

Pyrazine and its derivatives are a large group of compounds that exhibit broad biological activity, the changes of which can be easily detected by a substituent effect or a change in the functional group. The present studies combined theoretical research with the density functional theory (DFT) approach (B3LYP/6-311+G**) and experimental (potentiometric and spectrophotometric) analysis for a thorough understanding of the structure of chlorohydrazinopyrazine, its physicochemical and cytotoxic properties, and the site and nature of interaction with DNA. The obtained results indicated that 2-chloro-3-hydrazinopyrazine (2Cl3HP) displayed the highest affinity to DNA. Cytotoxicity studies revealed that the compound did not exhibit toxicity toward human dermal keratinocytes, which supported the potential application of 2Cl3HP in clinical use. The study also attempted to establish the possible equilibria occurring in the aqueous solution and, using both theoretical and experimental methods, clearly showed the hydrophilic nature of the compound. The experimental and theoretical results of the study confirmed the quality of the compound, as well as the appropriateness of the selected set of methods for similar research.


Assuntos
Antineoplásicos , Pirazinas , Antibacterianos/química , Antineoplásicos/química , DNA , Humanos , Pirazinas/química , Pirazinas/farmacologia , Água/química
5.
Biochem Pharmacol ; 194: 114803, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678221

RESUMO

Epidemiological studies established an association between chronic inflammation and higher risk of cancer. Inhibition of proteolytic enzymes represents a potential treatment strategy for cancer and prevention of cancer metastasis. Cathepsin C (CatC) is a highly conserved lysosomal cysteine dipeptidyl aminopeptidase required for the activation of pro-inflammatory neutrophil serine proteases (NSPs, elastase, proteinase 3, cathepsin G and NSP-4). NSPs are locally released by activated neutrophils in response to pathogens and non-infectious danger signals. Activated neutrophils also release neutrophil extracellular traps (NETs) that are decorated with several neutrophil proteins, including NSPs. NSPs are not only NETs constituents but also play a role in NET formation and release. Although immune cells harbor large amounts of CatC, additional cell sources for this protease exists. Upregulation of CatC expression was observed in different tissues during carcinogenesis and correlated with metastasis and poor patient survival. Recent mechanistic studies indicated an important interaction of tumor-associated CatC, NSPs, and NETs in cancer development and metastasis and suggested CatC as a therapeutic target in a several cancer types. Cancer cell-derived CatC promotes neutrophil recruitment in the inflammatory tumor microenvironment. Because the clinical consequences of genetic CatC deficiency in humans resulting in the elimination of NSPs are mild, small molecule inhibitors of CatC are assumed as safe drugs to reduce the NSP burden. Brensocatib, a nitrile CatC inhibitor is currently tested in a phase 3 clinical trial as a novel anti-inflammatory therapy for patients with bronchiectasis. However, recently developed CatC inhibitors possibly have protective effects beyond inflammation. In this review, we describe the pathophysiological function of CatC and discuss molecular mechanisms substantiating pharmacological CatC inhibition as a potential strategy for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Catepsina C/antagonistas & inibidores , Catepsina C/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Catepsina C/química , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Serina Proteases/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
6.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244300

RESUMO

This work describes the chemical synthesis, combinatorial selection, and enzymatic evaluation of peptidomimetic fluorescent substrates specific for the trypsin-like (ß2) subunit of the 20S human proteasome. After deconvolution of a library comprising nearly 6000 compounds composed of peg substituted diaminopropionic acid DAPEG building blocks, the sequence ABZ-Dap(O2(Cbz))-Dap(GO1)-Dap(O2(Cbz))-Arg-ANB-NH2, where ABZ is 2-aminobenzoic acid, and ANB- 5 amino 2- nitro benzoic acid was selected. Its cleavage followed sigmoidal kinetics, characteristic for allosteric enzymes, with Km = 3.22 ± 0.02 µM, kcat = 245 s-1, and kcat/Km = 7.61 × 107 M-1 s-1. This process was practically halted when a selective inhibitor of the ß2 subunit of the 20S human proteasome was supplemented to the reaction system. Titration of the substrate resulting in decreased amounts of proteasome 20S produced a linear signal up to 10-11 M. Using this substrate, we detected human proteasome 20S in human urine samples taken from the bladders of cancer patients. This observation could be useful for the noninvasive diagnosis of this severe disease.


Assuntos
Corantes Fluorescentes/química , Peptidomiméticos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Tripsina/isolamento & purificação , Humanos , Cinética , Modelos Moleculares , Correpressor 1 de Receptor Nuclear , Complexo de Endopeptidases do Proteassoma/química , Especificidade por Substrato , Neoplasias da Bexiga Urinária/metabolismo , ortoaminobenzoatos/metabolismo
7.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557781

RESUMO

Cysteine cathepsin C (CatC) is a ubiquitously expressed, lysosomal aminopeptidase involved in the activation of zymogens of immune-cell-associated serine proteinases (elastase, cathepsin G, proteinase 3, neutrophil serine proteinase 4, lymphocyte granzymes, and mast cell chymases). CatC is first synthetized as an inactive zymogen containing an intramolecular chain propeptide, the dimeric form of which is processed into the mature tetrameric form by proteolytic cleavages. A molecular modeling analysis of proCatC indicated that its propeptide displayed a similar fold to those of other lysosomal cysteine cathepsins, and could be involved in dimer formation. Our in vitro experiments revealed that human proCatC was processed and activated by CatF, CatK, and CatV in two consecutive steps of maturation, as reported for CatL and CatS previously. The unique positioning of the propeptide domains in the proCatC dimer complex allows this order of cleavages to be understood. The missense mutation Leu172Pro within the propeptide region associated with the Papillon-Lefèvre and Haim-Munk syndrome altered the proform stability as well as the maturation of the recombinant Leu172Pro proform.


Assuntos
Catepsina C/química , Precursores Enzimáticos/química , Modelos Moleculares , Conformação Molecular , Sítios de Ligação , Humanos , Ligação Proteica , Proteínas Recombinantes/química
8.
J Mol Graph Model ; 92: 154-166, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31376733

RESUMO

The recent NEWCT-9P version of the coarse-grained UNRES force field for proteins, with scale-consistent formulas for the local and correlation terms, has been tested in the CASP13 experiment of the blind-prediction of protein structure, in the ab initio, contact-assisted, and data-assisted modes. Significant improvement of the performance has been observed with respect to the CASP11 and CASP12 experiments (by over 10 GDT_TS units for the ab initio mode predictions and by over 15 GDT_TS units for the contact-assisted prediction, respectively), which is a result of introducing scale-consistent terms and improved handling of contact-distance restraints. As in previous CASP exercises, UNRES ranked higher in the free modeling category than in the general category that included template based modeling targets. Use of distance restraints from the predicted contacts, albeit many of them were wrong, resulted in the increase of GDT_TS by over 8 units on average and introducing sparse restraints from small-angle X-ray/neutron scattering and chemical cross-link-mass-spectrometry experiments, and ambiguous restraints from nuclear magnetic resonance experiments has also improved the predictions by 8.6, 9.7, and 10.7 GDT_TS units on average, respectively.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Algoritmos , Proteínas da Matriz do Complexo de Golgi/química , Peptídeos/química
9.
Amino Acids ; 51(8): 1201-1207, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31302778

RESUMO

Rat sialorphin (Gln-His-Asn-Pro-Arg) is a natural blocker of neprilysin (NEP) that belongs to the family of endogenous opioid peptide-degrading enzymes. Studies have confirmed the efficiency of sialorphin in blocking the activity of NEP, both in vitro and in vivo. It has been demonstrated that this inhibitor has a strong analgesic, anti-inflammatory, immunological and metabolic effect either directly or indirectly by affecting the level of Met/Leu-enkephalins. In this work, sialorphin and their 12 analogues were synthesised using the solid-phase method. The effect of the peptides on the degradation of Met-enkephalin by NEP and metabolic degradation in human plasma was investigated in vitro. We show that the change in the N-terminal amino acid configuration from L to D in almost all peptides, except D-Arg-His-Asn-Pro-Arg (peptide XI), led to the abolition of their inhibitory activity. With molecular modelling technique we explained the structural properties of the L and D-arginine located on the N-terminal part of the peptide. The detailed analysis of the protein binding pocket allowed us to explain why D-arginine is so unique among all D residues. Peptide XI showed the highest stability among the tested peptides in human plasma. For instance sialorphin after a 2-hour incubation in human plasma was almost completely decomposed, while the level of peptide XI dropped to 45% after 48 h under these conditions.


Assuntos
Encefalina Metionina/metabolismo , Modelos Moleculares , Neprilisina/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Humanos , Técnicas In Vitro
10.
J Phys Chem B ; 123(27): 5721-5729, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31194908

RESUMO

Phosphorylated proteins take part in many signaling pathways and play a key role in homeostasis regulation. The all-atom force fields enable us to study the systems containing phosphorylated proteins, but they are limited to short time scales. In this paper, we report the extension of the physics-based coarse-grained UNRES force field to treat systems with phosphorylated amino-acid residues. To derive the respective potentials, appropriate physics-based analytical expressions were fitted to the potentials of mean force of systems modeling phosphorylated amino-acid residues computed in our previous work and implemented in UNRES. The extended UNRES performed well in ab initio simulations of two miniproteins containing phosphorylated residues, strongly suggesting that realistic large-scale simulations of processes involving phosphorylated proteins, especially signaling processes, are now possible.


Assuntos
Peptídeos/metabolismo , Modelos Moleculares , Peptídeos/química , Fosforilação , Teoria Quântica
11.
Biochem Pharmacol ; 164: 349-367, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30978322

RESUMO

Cathepsin C (CatC) is a dipeptidyl-exopeptidase which activates neutrophil serine protease precursors (elastase, proteinase 3, cathepsin G and NSP4) by removing their N-terminal propeptide in bone marrow cells at the promyelocytic stage of neutrophil differentiation. The resulting active proteases are implicated in chronic inflammatory and autoimmune diseases. Hence, inhibition of CatC represents a therapeutic strategy to suppress excessive protease activities in various neutrophil mediated diseases. We designed and synthesized a series of dipeptidyl cyclopropyl nitrile compounds as putative CatC inhibitors. One compound, IcatCXPZ-01 ((S)-2-amino-N-((1R,2R)-1-cyano-2-(4'-(4-methylpiperazin-1-ylsulfonyl)biphenyl-4-yl)cyclopropyl)butanamide)) was identified as a potent inhibitor of both human and rodent CatC. In mice, pharmacokinetic studies revealed that IcatCXPZ-01 accumulated in the bone marrow reaching levels suitable for CatC inhibition. Subcutaneous administration of IcatCXPZ-01 in a monoclonal anti-collagen antibody induced mouse model of rheumatoid arthritis resulted in statistically significant anti-arthritic activity with persistent decrease in arthritis scores and paw thickness.


Assuntos
Antiasmáticos/química , Antiasmáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Catepsina C/antagonistas & inibidores , Catepsina C/metabolismo , Animais , Antiasmáticos/farmacologia , Cristalografia por Raios X/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Relação Estrutura-Atividade , Células U937
12.
Amino Acids ; 50(8): 1083-1088, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29752565

RESUMO

Enkephalins are involved in a number of physiological processes. However, these peptides are quickly degraded by peptidases, e.g. the neutral endopeptidase (NEP). Inhibition of the enzymatic degradation of enkephalins is one of the possible approaches to prolong their activity. Selective inhibitor of NEP, sialorphin, is the attractive lead compound for enkephalins degradation studies. In this work, an alanine scan of sialorphin and a series of its hybrids with opiorphin, synthesised by the solid phase method, were performed. The effect of the peptides on degradation of Met-enkephalin by NEP in vitro was investigated. Molecular modelling technique was used to identify residues responsible for protein-ligand interactions. We showed that substitution of amino acids Gln1, Pro4 and Arg5 of sialorphin for Ala significantly reduced the half-life of Met-enkephalin in the presence of NEP. [Ala3]sialorphin displayed a higher inhibitory potency against NEP than sialorphin. Substitution of His2 for Ala led to a compound which was as active as lead compound. Sialorphin has a structure which hardly tolerates substitution in its sequence at positions 1, 4 and 5. The conversion of His2 for alanine in sialorphin is tolerated very well. The higher inhibitory potency of [Ala3]sialorphin than sialorphin against NEP is caused by removal of the hydrophilic residue (Asn) and a better fit of the peptide to the enzyme-binding pocket. The role of side chains of sialorphin in degradation of enkephalin by NEP has been explored. This study also provides an important SAR information essential for further drug design.


Assuntos
Alanina/química , Encefalina Metionina/metabolismo , Encefalinas/metabolismo , Neprilisina/antagonistas & inibidores , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Proteínas e Peptídeos Salivares/farmacologia , Acetilação , Sequência de Aminoácidos , Encefalinas/química , Modelos Moleculares , Oligopeptídeos/química , Peptídeos/química , Ligação Proteica , Conformação Proteica , Proteólise/efeitos dos fármacos , Proteínas e Peptídeos Salivares/química , Técnicas de Síntese em Fase Sólida
13.
ACS Comb Sci ; 19(9): 565-573, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28741928

RESUMO

Herein, we report selection, synthesis, and enzymatic evaluation of a peptidomimetic library able to increase proteolytic activity of HtrA3 (high temperature requirement A) protease. Iterative deconvolution in solution of synthesized modified pentapeptides yielded two potent HtrA3 activators acting in the micromolar range (HCOO-CH2O-C6H4-OCH2-CO-Tyr-Asn-Phe-His-Asn-OH and HCOO-CH2O-C6H4-OCH2-CO-Tyr-Asn-Phe-His-Glu-OH). Both compounds increased proteolysis of an artificial HtrA3 substrate over 40-fold in a selective manner. On the basis of molecular modeling, the selected compounds bind strongly to the PDZ domain.


Assuntos
Ativadores de Enzimas/síntese química , Oligopeptídeos/síntese química , Peptidomiméticos/síntese química , Serina Endopeptidases/química , Sequência de Aminoácidos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Técnicas de Química Combinatória , Ativadores de Enzimas/química , Humanos , Modelos Moleculares , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Domínios PDZ , Biblioteca de Peptídeos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
14.
Sci Rep ; 7(1): 6177, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733623

RESUMO

Proteasomes are responsible for protein turnover in eukaryotic cells, degrading short-lived species but also removing improperly folded or oxidatively damaged ones. Dysfunction of a proteasome results in gradual accumulation of misfolded/damaged proteins, leading to their aggregation. It has been postulated that proteasome activators may facilitate removal of such aggregation-prone proteins and thus prevent development of neurodegenerative disorders. However, the discovery of pharmacologically relevant compounds is hindered by insufficient structural understanding of the activation process. In this study we provide a model peptidic activator of human proteasome and analyze the structure-activity relationship within this novel scaffold. The binding mode of the activator at the relevant pocket within the proteasome has been determined by X-ray crystallography. This crystal structure provides an important basis for rational design of pharmacological compounds. Moreover, by providing a novel insight into the proteasome gating mechanism, our results allow the commonly accepted model of proteasome regulation to be revisited.


Assuntos
Peptídeos/síntese química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Peso Molecular , Peptídeos/química , Peptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/química , Saccharomyces cerevisiae/química , Relação Estrutura-Atividade
15.
Arch Biochem Biophys ; 621: 6-23, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28396256

RESUMO

Human HtrA1-4 proteins belong to the HtrA family of evolutionarily conserved serine proteases and function as important modulators of many physiological processes, including maintenance of mitochondrial homeostasis, cell signaling and apoptosis. Disturbances in their action are linked to severe diseases, including oncogenesis and neurodegeneration. The HtrA1-4 proteins share structural and functional features of other members of the HtrA protein family, however there are several significant differences in structural architecture and mechanisms of action which makes each of them unique. Our goal is to present recent studies regarding human HtrAs. We focus on their physiological functions, structure and regulation, and describe current models of activation mechanisms. Knowledge of molecular basis of the human HtrAs' action is a subject of great interest; it is crucial for understanding their relevance in cellular physiology and pathogenesis as well as for using them as targets in future therapies of diseases such as neurodegenerative disorders and cancer.


Assuntos
Apoptose/fisiologia , Mitocôndrias/fisiologia , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia , Sítios de Ligação , Ativação Enzimática , Humanos , Domínios PDZ/fisiologia , Ligação Proteica , Conformação Proteica , Serina Endopeptidases/ultraestrutura , Relação Estrutura-Atividade
16.
Future Med Chem ; 8(18): 2231-2243, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27845570

RESUMO

AIM: The pharmacotherapy of inflammatory bowel disease is difficult and currently available treatments bring mostly poor and unsatisfactory results. RESULTS: The purpose of this work was the synthesis of opiorphin, sialorphin, spinorphin and a series of their analogs and the in vitro characterization of their effect on degradation of enkephalin by neutral endopeptidase and aminopeptidase N. Consequently, we investigated in vivo the anti-inflammatory effect of the most active inhibitors selected in the in vitro studies (Pal-KKQRFSR & Pal-KKQHNPR). Putative inhibitor - enzyme (neutral endopeptidase or aminopeptidase N) complexes are also presented and their binding interfaces are identified. CONCLUSION: Our results suggest that Pal-KKQHNPR has the potential to become a valuable template for anti-inflammatory therapeutics for the treatment of GI tract inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Produtos Biológicos/farmacologia , Colite/tratamento farmacológico , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Neprilisina/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Colite/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Neprilisina/metabolismo
17.
Bioinformatics ; 32(21): 3270-3278, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27378298

RESUMO

Participating as the Cornell-Gdansk group, we have used our physics-based coarse-grained UNited RESidue (UNRES) force field to predict protein structure in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11). Our methodology involved extensive multiplexed replica exchange simulations of the target proteins with a recently improved UNRES force field to provide better reproductions of the local structures of polypeptide chains. All simulations were started from fully extended polypeptide chains, and no external information was included in the simulation process except for weak restraints on secondary structure to enable us to finish each prediction within the allowed 3-week time window. Because of simplified UNRES representation of polypeptide chains, use of enhanced sampling methods, code optimization and parallelization and sufficient computational resources, we were able to treat, for the first time, all 55 human prediction targets with sizes from 44 to 595 amino acid residues, the average size being 251 residues. Complete structures of six single-domain proteins were predicted accurately, with the highest accuracy being attained for the T0769, for which the CαRMSD was 3.8 Å for 97 residues of the experimental structure. Correct structures were also predicted for 13 domains of multi-domain proteins with accuracy comparable to that of the best template-based modeling methods. With further improvements of the UNRES force field that are now underway, our physics-based coarse-grained approach to protein-structure prediction will eventually reach global prediction capacity and, consequently, reliability in simulating protein structure and dynamics that are important in biochemical processes. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://www.unres.pl/ CONTACT: has5@cornell.edu.


Assuntos
Modelos Moleculares , Proteínas/química , Animais , Humanos , Conformação Proteica , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes
18.
Biochim Biophys Acta ; 1864(3): 283-296, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26702898

RESUMO

HtrA2(Omi) protease is involved in the maintenance of mitochondrial homeostasis and stimulation of apoptosis as well as in development of cancer and neurodegenerative disorders. The protein is a homotrimer whose subunits comprise serine protease domain (PD) and PDZ regulatory domain. In the basal, inactive state, a tight interdomain interface limits access both to the PDZ peptide (carboxylate) binding site and to the PD catalytic center. The molecular mechanism of activation is not well understood. To further the knowledge of HtrA2 thermal activation we monitored the dynamics of the PDZ-PD interactions during temperature increase using tryptophan-induced quenching (TrIQ) method. The TrIQ results suggested that during activation the PDZ domain changed its position versus PD inside a subunit, including a prominent change affecting the L3 regulatory loop of PD, and also changed its interactions with the PD of the adjacent subunit (PD*), specifically with its L1* regulatory loop containing the active site serine. The α5 helix of PDZ was involved in both, the intra- and intersubunit changes of interactions and thus seems to play an important role in HtrA2 activation. The amino acid substitutions designed to decrease the PDZ interactions with the PD or PD* promoted protease activity at a wide range of temperatures, which supports the conclusions based on the TrIQ analysis. The model presented in this work describes PDZ movement in relation to PD and PD*, resulting in an increased access to the peptide binding and active sites, and conformational changes of the L3 and L1* loops.


Assuntos
Regulação Alostérica , Mitocôndrias/química , Proteínas Mitocondriais/química , Peptídeos/química , Serina Endopeptidases/química , Sítios de Ligação , Domínio Catalítico , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Domínios PDZ , Ligação Proteica , Estrutura Secundária de Proteína , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Triptofano/química
19.
Cell Stress Chaperones ; 18(1): 35-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22851136

RESUMO

HtrA2(Omi), belonging to the high-temperature requirement A (HtrA) family of stress proteins, is involved in the maintenance of mitochondrial homeostasis and in the stimulation of apoptosis, as well as in cancer and neurodegenerative disorders. The protein comprises a serine protease domain and a postsynaptic density of 95 kDa, disk large, and zonula occludens 1 (PDZ) regulatory domain and functions both as a protease and a chaperone. Based on the crystal structure of the HtrA2 inactive trimer, it has been proposed that PDZ domains restrict substrate access to the protease domain and that during protease activation there is a significant conformational change at the PDZ-protease interface, which removes the inhibitory effect of PDZ from the active site. The crystal structure of the HtrA2 active form is not available yet. HtrA2 activity markedly increases with temperature. To understand the molecular basis of this increase in activity, we monitored the temperature-induced structural changes using a set of single-Trp HtrA2 mutants with Trps located at the PDZ-protease interface. The accessibility of each Trp to aqueous medium was assessed by fluorescence quenching, and these results, in combination with mean fluorescence lifetimes and wavelength emission maxima, indicate that upon an increase in temperature the HtrA2 structure relaxes, the PDZ-protease interface becomes more exposed to the solvent, and significant conformational changes involving both domains occur at and above 30 °C. This conclusion correlates well with temperature-dependent changes of HtrA2 proteolytic activity and the effect of amino acid substitutions (V226K and R432L) located at the domain interface, on HtrA2 activity. Our results experimentally support the model of HtrA2 activation and provide an insight into the mechanism of temperature-induced changes in HtrA2 structure.


Assuntos
Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Temperatura , Substituição de Aminoácidos , Dicroísmo Circular , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Cinética , Luz , Proteínas Mitocondriais/genética , Modelos Moleculares , Domínios PDZ , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espalhamento de Radiação , Serina Endopeptidases/genética , Espectrometria de Fluorescência , Triptofano/metabolismo , Água/química
20.
J Mol Model ; 13(11): 1123-31, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17713798

RESUMO

S100B protein is one of the factors involved in the down-regulation of tumor suppressor protein p53, a transcription activator that signals for cycle arrest and apoptosis. As the inactivation of normal p53 functions is found in over half of human cancers, restoration of normal p53 functions through the destruction or prevention of S100B--p53 complexes represents a possible approach for the development of anti-cancer drugs. The aim of this work was to propose the S100B binding interface through an examination of the literature and use of molecular modeling (MM) techniques with AutoDock program and the AMBER force field. We propose two residues in the S100B binding pocket (Val56, Phe76) and two residues on the protein surface (Val52, Ala83) are essential for ligand binding. The data presented here indicate that interactions with these four residues are necessary for a reduction in the incidence of the S100B--p53 complex. Additionally, we have tried to explain a mechanism for the action of pentamidine, the best-known S100B ligand, and have proposed two S100B--pentamidine structures. The results presented here may be useful for the efficient design of new S100B ligands.


Assuntos
Fatores de Crescimento Neural/metabolismo , Proteínas S100/metabolismo , Proteína Supressora de Tumor p53/química , Apoptose , Sítios de Ligação , Ciclo Celular , Humanos , Ligantes , Modelos Moleculares , Fatores de Crescimento Neural/efeitos dos fármacos , Pentamidina/farmacologia , Fenilalanina , Conformação Proteica , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/efeitos dos fármacos , Valina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA