Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; 19(6-7): 401-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19778240

RESUMO

Oxidative stress in biological systems can result in radical-induced lipid peroxidation (LPO), which can lead to the production of secondary reactive by-products such as 4-hydroxy-2-nonenal (HNE), malondialdehyde (MDA), acrolein, and acetaldehyde. These deleterious compounds are known to react with and concomitantly modify nucleophilic amino acid residues on proteins. Oxidative stress induced by cigarette smoke (CS) has been put forth as a major mechanism for tobacco-induced pathologies. At present, there are few reliable biomarkers for measuring the extent of oxidatively-induced damage resulting from CS exposure in vivo. This study has utilized a previously reported CS exposure system to expose cultured cells in-vitro to whole CS and determine the extent of LPO resulting from CS exposure by quantifying the increase in HNE within the exposure media versus controls via gas chromatography mass spectrometry. Additionally, we obtained protein enriched cell lysate post-CS exposures and measured the fluorescent signal obtained via direct injection fluorescent analysis at 375 nm ex./415 nm em. This study determined that the fluorescent signal intensity was directly proportional to the quantity increase of HNE in CS exposed media. It further tested this correlation by performing HNE titration addition experiments to cultured cells and Western blot analysis on proteins obtained from cell lysates. Finally, the fluorescent signal increase from authentic BSA solutions incubated with increasing concentrations of HNE was measured. It is proposed that the fluorescent signal observed from the protein lysate of CS exposed cultured cells corresponds to the extent of biological damage resulting from secondary reactive by-products formed from LPO induced via CS exposure and represented by HNE. The fluorescent signals increased in intensity upon increasing CS dose up to 20 min and remained elevated over 24 h after cessation of CS exposure.


Assuntos
Peroxidação de Lipídeos , Nicotiana/química , Fumaça , Espectrometria de Fluorescência/métodos , Aldeídos/metabolismo , Animais , Células Cultivadas , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Soroalbumina Bovina/metabolismo , Fumar , Espectrometria de Fluorescência/instrumentação
2.
Mutat Res ; 678(1): 43-52, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19591958

RESUMO

Differentiation among American cigarettes relies primarily on the use of proprietary tobacco blends, menthol, tobacco substitutes, paper porosity, paper additives, and filter ventilation. These characteristics substantially alter per cigarette yields of tar and nicotine in standardized protocols promulgated by government agencies. However, due to compensatory alterations in smoking behavior to sustain a preferred nicotine dose (e.g., by increasing puff frequency, inhaling more deeply, smoking more cigarettes per day, or blocking filter ventilation holes), smokers actually inhale similar amounts of tar and nicotine regardless of any cigarette variable, supporting epidemiological evidence that all brands have comparable disease risk. Consequently, it would be advantageous to develop assays that realistically compare cigarette smoke (CS)-induced genotoxicity regardless of differences in cigarette construction or smoking behavior. One significant indicator of potentially carcinogenic DNA damage is double strand breaks (DSBs), which can be monitored by measuring Ser 139 phosphorylation on histone H2AX. Previously we showed that phosphorylation of H2AX (defined as gammaH2AX) in exposed lung cells is proportional to CS dose. Thus, we proposed that gammaH2AX may be a viable biomarker for evaluating genotoxic risk of cigarettes in relation to actual nicotine/tar delivery. Here we tested this hypothesis by measuring gammaH2AX levels in A549 human lung cells exposed to CS from a range of commercial cigarettes using various smoking regimens. Results show that gammaH2AX induction, a critical event of the mammalian DNA damage response, provides an assessment of CS-induced DNA damage independent of smoking topography or cigarette type. We conclude that gammaH2AX induction shows promise as a genotoxic bioassay offering specific advantages over the traditional assays for the evaluation of conventional and nonconventional tobacco products.


Assuntos
Biomarcadores/análise , Dano ao DNA , Histonas/análise , Testes de Mutagenicidade/métodos , Nicotina/toxicidade , Alcatrões/toxicidade , Linhagem Celular Tumoral , Humanos , Risco , Fumar/efeitos adversos
3.
BMC Cancer ; 8: 229, 2008 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-18694499

RESUMO

BACKGROUND: Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer. METHODS: Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry. RESULTS: We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2 alpha) or phosphorylation (i.e., phospho-eIF2 alpha) in a majority of human lung cancers. CONCLUSION: These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2 alpha and BiP may have diagnostic and/or therapeutic potential. Furthermore, we speculate that upregulation of UPR regulators (in particular BiP) may provide a pro-survival advantage by increasing resistance to cytotoxic stresses such as hypoxia and chemotherapeutic drugs, and that UPR induction is a potential mechanism that could be attenuated or reversed resulting in a more efficacious treatment strategy for lung cancer.


Assuntos
Retículo Endoplasmático/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Fumar/efeitos adversos , Adulto , Idoso , Ciclo Celular , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Imuno-Histoquímica/métodos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Pessoa de Meia-Idade , Estresse Oxidativo , Desnaturação Proteica , Fumaça/efeitos adversos
4.
BMC Cell Biol ; 8: 26, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17594478

RESUMO

BACKGROUND: In response to DNA damage or structural alterations of chromatin, histone H2AX may be phosphorylated on Ser139 by phosphoinositide 3-kinase related protein kinases (PIKKs) such as ataxia telangiectasia mutated (ATM), ATM-and Rad-3 related (ATR) kinase, or by DNA dependent protein kinase (DNA-PKcs). When DNA damage primarily involves formation of DNA double-strand breaks (DSBs), H2AX is preferentially phosphorylated by ATM rather than by the other PIKKs. We have recently reported that brief exposure of human pulmonary adenocarcinoma A549 cells or normal human bronchial epithelial cells (NHBE) to cigarette smoke (CS) induced phosphorylation of H2AX. RESULTS: We report here that H2AX phosphorylation in A549 cells induced by CS was accompanied by activation of ATM, as revealed by ATM phosphorylation on Ser1981 (ATM-S1981P) detected immunocytochemically and by Western blotting. No cell cycle-phase specific differences in kinetics of ATM activation and H2AX phosphorylation were observed. When cells were exposed to CS from cigarettes with different tobacco and filter combinations, the expression levels of ATM-S1981P correlated well with the increase in expression of phosphorylated H2AX (gammaH2AX) (R = 0.89). In addition, we note that while CS-induced gammaH2AX expression was localized within discrete foci, the activated ATM was distributed throughout the nucleoplasm. CONCLUSION: These data implicate ATM as the PIKK that phosphorylates H2AX in response to DNA damage caused by CS. Based on current understanding of ATM activation, expression and localization, these data would suggest that, in addition to inducing potentially carcinogenic DSB lesions, CS may also trigger other types of DNA lesions and cause chromatin alterations. As checkpoint kinase (Chk) 1, Chk2 and the p53 tumor suppressor gene are known to be phosphorylated by ATM, the present data indicate that exposure to CS may lead to their phosphorylation, with the downstream consequences related to the halt in cell cycle progression and increased propensity to undergo apoptosis. Defining the nature and temporal sequence of molecular events that are disrupted by CS through activation and eventual dysregulation of normal defense mechanisms such as ATM and its downstream effectors may allow a more precise understanding of how CS promotes cancer development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fumaça , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Fosforilação , Fosfosserina/metabolismo , Nicotiana
5.
Int J Oncol ; 28(6): 1491-505, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16685450

RESUMO

DNA double-strand breaks (DSBs) are potentially mutagenic/carcinogenic lesions. Induction of DSBs triggers phosphorylation of histone H2AX on Ser-139. Phosphorylated H2AX (gammaH2AX) can be detected immunocytochemically, and the intensity of gammaH2AX immunofluorescence (IF), reflecting the number of gammaH2AX-IF foci per nucleus, reveals the frequency of DSBs. Using multiparameter cytometric analysis of gammaH2AX-IF, we previously observed that DSBs are induced in normal human bronchial epithelial (NHBE) and A549 pulmonary adenocarcinoma cells following exposure to cigarette smoke (CS) or smoke condensate. In the present study, we show that N-acetyl L-cysteine (NAC) and glutathione, both effective scavengers of free radicals, prevented induction of DSBs by CS in these cells. In contrast, the glutathione synthesis inhibitor, DL-Buthionine-[S,R]-sulfoximine (BSO), enhanced the induction of DSBs by CS. The observed reduction of DSBs by NAC correlated with protection of the reproductive capability (clonogenicity) of A549 cells treated with CS. The data implicate formation of free radicals by CS as factors generating DSBs and affecting cell survival. Interestingly, at the conditions of exposure to CS when clonogenicity was only moderately affected, S-phase cells showed significantly higher sensitivity in terms of induction of DSBs compared with G1 or G2M cells. In light of the evidence that CS increases oxidative stress and induces cell proliferation in the lungs of smokers, the high propensity of S-phase cells to develop DSBs upon exposure to CS has to be considered as a potentially pathogenic event in smoke-induced tumor development. This is the first report to reveal cell cycle-phase specificity in both the induction of DSBs by CS and their prevention by free radical scavengers. The detection of gammaH2AX to assess the induction of CS-induced DSBs and their relationship to cell cycle phase provides a convenient tool to explore approaches to protect cells from this type of genotoxic damage.


Assuntos
Dano ao DNA , Pulmão/patologia , Pulmão/fisiologia , Mucosa Respiratória/fisiologia , Fumaça/efeitos adversos , Linhagem Celular Tumoral , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/metabolismo , Histonas/efeitos dos fármacos , Histonas/metabolismo , Humanos , Neoplasias Pulmonares , Fosfoproteínas/metabolismo , Mucosa Respiratória/patologia , Fumar , Tioureia/análogos & derivados , Tioureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA