Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 682: 244-249, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826947

RESUMO

Microtubule dynamics is modulated by many cellular factors including stathmin family proteins. Vertebrate stathmins sequester two αß-tubulin heterodimers into a tight complex that cannot be incorporated in microtubules. Stathmins are regulated at the expression level during development and among tissues; they are also regulated by phosphorylation. Here, we study the dissociation kinetics of tubulin:stathmin assemblies in presence of different tubulin-binding proteins and identify a critical role of the C-terminus of the stathmin partner. Destabilizing this C-terminal region may represent an additional regulatory mechanism of the interaction with tubulin of stathmin proteins.


Assuntos
Estatmina , Tubulina (Proteína) , Proteínas dos Microtúbulos/análise , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Estatmina/metabolismo , Tubulina (Proteína)/metabolismo
2.
ACS Omega ; 7(3): 2591-2603, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35097257

RESUMO

Colchicine, the main active alkaloid from Colchicum autumnale L., is a potent tubulin binder and represents an interesting lead structure for the development of potential anticancer chemotherapeutics. We report on the synthesis and investigation of potentially reactive colchicinoids and their surprising biological activities. In particular, the previously undescribed colchicinoid PT-100, a B-ring contracted 6-exo-methylene colchicinoid, exhibits extraordinarily high antiproliferative and apoptosis-inducing effects on various types of cancer cell lines like acute lymphoblastic leukemia (Nalm6), acute myeloid leukemia (HL-60), Burkitt-like lymphoma (BJAB), human melanoma (MelHO), and human breast adenocarcinoma (MCF7) cells at low nanomolar concentrations. Apoptosis induction proved to be especially high in multidrug-resistant Nalm6-derived cancer cell lines, while healthy human leukocytes and hepatocytes were not affected by the concentration range studied. Furthermore, caspase-independent initiation of apoptosis via an intrinsic pathway was observed. PT-100 also shows strong synergistic effects in combination with vincristine on BJAB and Nalm6 cells. Cocrystallization of PT-100 with tubulin dimers revealed its (noncovalent) binding to the colchicine-binding site of ß-tubulin at the interface to the α-subunit. A pronounced effect of PT-100 on the cytoskeleton morphology was shown by fluorescence microscopy. While the reactivity of PT-100 as a weak Michael acceptor toward thiols was chemically proven, it remains unclear whether this contributes to the remarkable biological properties of this unusual colchicinoid.

3.
FEBS Open Bio ; 11(3): 564-577, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33513284

RESUMO

Motile kinesins are motor proteins that translocate along microtubules as they hydrolyze ATP. They share a conserved motor domain which harbors both ATPase and microtubule-binding activities. An ATP hydrolysis mechanism involving two water molecules has been proposed based on the structure of the kinesin-5 Eg5 bound to an ATP analog. Whether this mechanism is general in the kinesin superfamily remains uncertain. Here, we present structural snapshots of the motor domain of OSM-3 along its nucleotide cycle. OSM-3 belongs to the homodimeric kinesin-2 subfamily and is the Caenorhabditis elegans homologue of human KIF17. OSM-3 bound to ADP or devoid of a nucleotide shows features of ADP-kinesins with a docked neck linker. When bound to an ATP analog, OSM-3 adopts a conformation similar to those of several ATP-like kinesins, either isolated or bound to tubulin. Moreover, the OSM-3 nucleotide-binding site is virtually identical to that of ATP-like Eg5, demonstrating a shared ATPase mechanism. Therefore, our data extend to kinesin-2 the two-water ATP hydrolysis mechanism and further suggest that it is universal within the kinesin superfamily. PROTEIN DATABASE ENTRIES: 7A3Z, 7A40, 7A5E.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Hidrólise , Modelos Moleculares , Nucleotídeos/metabolismo , Conformação Proteica , Domínios Proteicos
4.
Eur J Med Chem ; 207: 112724, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827941

RESUMO

Two series of heterocyclic colchicinoids bearing ß-methylenedihydrofuran or 2H-pyran-2-one fragments were synthesized by the intramolecular Heck reaction. Methylenedihydrofuran compounds 9a and 9h were found to be the most cytotoxic among currently known colchicinoids, exhibiting outstanding antiproliferative activity on tumor cell lines in picomolar (0.01-2.1 nM) range of concentrations. Compound 9a potently and substoichiometrically inhibits microtubule formation in vitro, being an order of magnitude more active in this assay than colchicine. Derivatives 9a and 9h revealed relatively low acute toxicity in mice (LD50 ≥ 10 mg/kg i.v.). The X-Ray structure of colchicinoid 9a bound to tubulin confirmed interaction of this compound with the colchicine binding site of tubulin.


Assuntos
Antimitóticos/química , Antimitóticos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Colchicina/análogos & derivados , Colchicina/farmacologia , Animais , Antimitóticos/toxicidade , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colchicina/toxicidade , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/química , Furanos/farmacologia , Furanos/toxicidade , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/toxicidade
5.
J Med Chem ; 62(4): 1902-1916, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30525602

RESUMO

We report the synthesis and metabolic and biological evaluation of a series of 17 novel heterocyclic derivatives of isocombretastatin-A4 (iso-CA-4) and their structure-activity relationships. Among these derivatives, the most active compound, 4f, inhibited the growth of a panel of seven cancer cell lines with an IC50 in the low nanomolar range. In addition, 4f showed interesting activity against CA-4-resistant colon-carcinoma cells and multidrug-resistant leukemia cells. It also induced G2/M cell-cycle arrest. Structural data indicated binding of 4f to the colchicine site of tubulin, likely preventing the curved-to-straight tubulin structural changes that occur during microtubule assembly. Also, 4f disrupted the blood-vessel-like assembly formed by human umbilical-vein endothelial cells in vitro, suggesting its function as a vascular-disrupting agent. An in vitro metabolism study of 4f showed its high human-microsomal stability in comparison with that of iso-CA-4. The physicochemical properties of 4f may be conducive to CNS permeability, suggesting that this compound may be a possible candidate for the treatment of glioblastoma.


Assuntos
Carbazóis/farmacologia , Quinaldinas/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Carbazóis/síntese química , Carbazóis/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Polimerização/efeitos dos fármacos , Ligação Proteica , Quinaldinas/síntese química , Quinaldinas/metabolismo , Ratos , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/metabolismo
6.
Nat Commun ; 8(1): 70, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694425

RESUMO

Kinesin-13s are critical microtubule regulators which induce microtubule disassembly in an ATP dependent manner. To clarify their mechanism, we report here the crystal structure of a functional construct of the kinesin-13 Kif2C/MCAK in an ATP-like state and bound to the αß-tubulin heterodimer, a complex mimicking the species that dissociates from microtubule ends during catalytic disassembly. Our results picture how Kif2C stabilizes a curved tubulin conformation. The Kif2C α4-L12-α5 region undergoes a remarkable 25° rotation upon tubulin binding to target the αß-tubulin hinge. This movement leads the ß5a-ß5b motif to interact with the distal end of ß-tubulin, whereas the neck and the KVD motif, two specific elements of kinesin-13s, target the α-tubulin distal end. Taken together with the study of Kif2C mutants, our data suggest that stabilization of a curved tubulin is an important contribution to the Kif2C mechanism.Kinesin-13s are microtubule depolymerizing enzymes. Here the authors present the crystal structure of a DARPin fused construct comprising the short neck region and motor domain of kinesin-13 in complex with an αß-tubulin heterodimer, which shows that kinesin-13 functions by stabilizing a curved tubulin conformation.


Assuntos
Cinesinas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cristalização , Escherichia coli , Regulação Enzimológica da Expressão Gênica , Cinesinas/química , Microtúbulos , Mutação , Conformação Proteica
7.
Nat Commun ; 8: 15787, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28585532

RESUMO

As a major component of the cytoskeleton, microtubules consist of αß-tubulin heterodimers and have been recognized as attractive targets for cancer chemotherapy. Microtubule-stabilizing agents (MSAs) promote polymerization of tubulin and stabilize the polymer, preventing depolymerization. The molecular mechanisms by which MSAs stabilize microtubules remain elusive. Here we report a 2.05 Å crystal structure of tubulin complexed with taccalonolide AJ, a newly identified taxane-site MSA. Taccalonolide AJ covalently binds to ß-tubulin D226. On AJ binding, the M-loop undergoes a conformational shift to facilitate tubulin polymerization. In this tubulin-AJ complex, the E-site of tubulin is occupied by GTP rather than GDP. Biochemical analyses confirm that AJ inhibits the hydrolysis of the E-site GTP. Thus, we propose that the ß-tubulin E-site is locked into a GTP-preferred status by AJ binding. Our results provide experimental evidence for the connection between MSA binding and tubulin nucleotide state, and will help design new MSAs to overcome taxane resistance.


Assuntos
Microtúbulos/efeitos dos fármacos , Esteroides/química , Esteroides/farmacologia , Tubulina (Proteína)/química , Cristalografia por Raios X , Guanosina Trifosfato/metabolismo , Células Hep G2 , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Fatores de Crescimento Neural/metabolismo , Estatmina/metabolismo , Tubulina (Proteína)/metabolismo
8.
Sci Rep ; 7: 42558, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195215

RESUMO

Kinesin-1 is an ATP-dependent motor protein that moves towards microtubules (+)-ends. Whereas structures of isolated ADP-kinesin and of complexes with tubulin of apo-kinesin and of ATP-like-kinesin are available, structural data on apo-kinesin-1 in the absence of tubulin are still missing, leaving the role of nucleotide release in the structural cycle unsettled. Here, we identified mutations in the kinesin nucleotide-binding P-loop motif that interfere with ADP binding. These mutations destabilize the P-loop (T87A mutant) or magnesium binding (T92V), highlighting a dual mechanism for nucleotide release. The structures of these mutants in their apo form are either isomorphous to ADP-kinesin-1 or to tubulin-bound apo-kinesin-1. Remarkably, both structures are also obtained from the nucleotide-depleted wild-type protein. Our results lead to a model in which, when detached from microtubules, apo-kinesin possibly occupies the two conformations we characterized, whereas, upon microtubule binding, ADP-kinesin converts to the tubulin-bound apo-kinesin conformation and releases ADP. This conformation is primed to bind ATP and, therefore, to run through the natural nucleotide cycle of kinesin-1.


Assuntos
Cinesinas/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Humanos , Cinesinas/química , Cinesinas/genética , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Mutação , Nucleotídeos/química , Nucleotídeos/metabolismo , Ligação Proteica , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
9.
FEBS J ; 283(1): 102-11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26462166

RESUMO

UNLABELLED: Microtubules are dynamic assemblies of αß-tubulin heterodimers and have been recognized as highly attractive targets for cancer chemotherapy. A broad range of agents bind to tubulin and interfere with microtubule assembly. Despite having a long history of characterization, colchicine binding site inhibitors (CBSIs) have not yet reached the commercial phase as anti-cancer drugs to date. We determined the structures of tubulin complexed with a set of structurally diverse CBSIs (lexibulin, nocodazole, plinabulin and tivantinib), among which nocodazole and tivantinib are both binary-function inhibitors targeting cancer-related kinases and microtubules simultaneously. High resolution structures revealed the detailed interactions between these ligands and tubulin. Our results showed that the binding modes of the CBSIs were different from previous docking models, highlighting the importance of crystal structure information in structure-based drug design. A real structure-based pharmacophore was proposed to rationalize key common interactions of the CBSIs at the colchicine domain. Our studies provide a solid structural basis for developing new anti-cancer agents for the colchicine binding site. DATABASE: The atomic coordinates and structure factors for tubulin complexed with lexibulin, nocodazole, plinabulin and tivantinib have been deposited in the Protein Data Bank under accession codes 5CA0, 5CA1, 5C8Y and 5CB4, respectively.


Assuntos
Antineoplásicos/farmacologia , Colchicina/farmacologia , Descoberta de Drogas , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Colchicina/química , Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Ligantes , Microtúbulos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Nocodazol/química , Nocodazol/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade , Suínos , Tubulina (Proteína)/química , Moduladores de Tubulina/química
10.
J Biol Chem ; 290(30): 18721-31, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26055718

RESUMO

Kinesin-13 proteins depolymerize microtubules in an ATP hydrolysis-dependent manner. The coupling between these two activities remains unclear. Here, we first studied the role of the kinesin-13 subfamily-specific loop 2 and of the KVD motif at the tip of this loop. Shortening the loop, the lysine/glutamate interchange and the additional Val to Ser substitution all led to Kif2C mutants with decreased microtubule-stimulated ATPase and impaired depolymerization capability. We rationalized these results based on a structural model of the Kif2C-ATP-tubulin complex derived from the recently determined structures of kinesin-1 bound to tubulin. In this model, upon microtubule binding Kif2C undergoes a conformational change governed in part by the interaction of the KVD motif with the tubulin interdimer interface. Second, we mutated to an alanine the conserved glutamate residue of the switch 2 nucleotide binding motif. This mutation blocks motile kinesins in a post-conformational change state and inhibits ATP hydrolysis. This Kif2C mutant still depolymerized microtubules and yielded complexes of one Kif2C with two tubulin heterodimers. These results demonstrate that the structural change of Kif2C-ATP upon binding to microtubule ends is sufficient for tubulin release, whereas ATP hydrolysis is not required. Overall, our data suggest that the conformation reached by kinesin-13s upon tubulin binding is similar to that of tubulin-bound, ATP-bound, motile kinesins but that this conformation is adapted to microtubule depolymerization.


Assuntos
Trifosfato de Adenosina/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Substituição de Aminoácidos/genética , Sítios de Ligação , Cristalografia por Raios X , Humanos , Hidrólise , Cinesinas/química , Cinesinas/genética , Microtúbulos/química , Microtúbulos/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Serina/genética , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Valina/genética
11.
Protein Sci ; 24(7): 1047-56, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25975756

RESUMO

Motile kinesins are motor proteins that move unidirectionally along microtubules as they hydrolyze ATP. They share a conserved motor domain (head) which harbors both the ATP- and microtubule-binding activities. The kinesin that has been studied most moves toward the microtubule (+)-end by alternately advancing its two heads along a single protofilament. This kinesin is the subject of this review. Its movement is associated to alternate conformations of a peptide, the neck linker, at the C-terminal end of the motor domain. Recent progress in the understanding of its structural mechanism has been made possible by high-resolution studies, by cryo electron microscopy and X-ray crystallography, of complexes of the motor domain with its track protein, tubulin. These studies clarified the structural changes that occur as ATP binds to a nucleotide-free microtubule-bound kinesin, initiating each mechanical step. As ATP binds to a head, it triggers orientation changes in three rigid motor subdomains, leading the neck linker to dock onto the motor core, which directs the other head toward the microtubule (+)-end. The relationship between neck linker docking and the orientations of the motor subdomains also accounts for kinesin's processivity, which is remarkable as this motor protein only falls off from a microtubule after taking about a hundred steps. As tools are now available to determine high-resolution structures of motor domains complexed to their track protein, it should become possible to extend these studies to other kinesins and relate their sequence variations to their diverse properties.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Cinesinas/antagonistas & inibidores , Modelos Moleculares , Miosinas/metabolismo , Conformação Proteica , Tubulina (Proteína)/metabolismo
12.
Nat Commun ; 5: 5364, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25395082

RESUMO

Kinesin-1 is a dimeric ATP-dependent motor protein that moves towards microtubules (+) ends. This movement is driven by two conformations (docked and undocked) of the two motor domains carboxy-terminal peptides (named neck linkers), in correlation with the nucleotide bound to each motor domain. Despite extensive data on kinesin-1, the structural connection between its nucleotide cycle and movement has remained elusive, mostly because the structure of the critical tubulin-bound apo-kinesin state was unknown. Here we report the 2.2 Å structure of this complex. From its comparison with detached kinesin-ADP and tubulin-bound kinesin-ATP, we identify three kinesin motor subdomains that move rigidly along the nucleotide cycle. Our data reveal how these subdomains reorient on binding to tubulin and when ATP binds, leading respectively to ADP release and to neck linker docking. These results establish a framework for understanding the transformation of chemical energy into mechanical work by (+) end-directed kinesins.


Assuntos
Cinesinas/metabolismo , Nucleotídeos/metabolismo , Tubulina (Proteína)/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Humanos , Cinesinas/fisiologia , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Simulação de Acoplamento Molecular , Movimento/fisiologia , Nucleotídeos/fisiologia , Estrutura Terciária de Proteína/fisiologia , Tubulina (Proteína)/fisiologia
13.
Nat Struct Mol Biol ; 20(8): 1001-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23872990

RESUMO

The typical function of kinesins is to transport cargo along microtubules. Binding of ATP to microtubule-attached motile kinesins leads to cargo displacement. To better understand the nature of the conformational changes that lead to the power stroke that moves a kinesin's load along a microtubule, we determined the X-ray structure of human kinesin-1 bound to αß-tubulin. The structure defines the mechanism of microtubule-stimulated ATP hydrolysis, which releases the kinesin motor domain from microtubules. It also reveals the structural linkages that connect the ATP nucleotide to the kinesin neck linker, a 15-amino acid segment C terminal to the catalytic core of the motor domain, to result in the power stroke. ATP binding to the microtubule-bound kinesin favors neck-linker docking. This biases the attachment of kinesin's second head in the direction of the movement, thus initiating each of the steps taken.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microtúbulos/fisiologia , Modelos Moleculares , Conformação Proteica , Tubulina (Proteína)/metabolismo , Anisotropia , Transporte Biológico/fisiologia , Cristalização , Humanos , Microtúbulos/metabolismo , Difração de Raios X
14.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 8): 927-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22868758

RESUMO

Vinca-domain ligands are compounds that bind to tubulin at its inter-heterodimeric interface and favour heterogeneous protofilament-like assemblies, giving rise to helices and rings. This is the basis for their inhibition of microtubule assembly, for their antimitotic activities and for their use in anticancer chemotherapy. Ustiloxins are vinca-domain ligands with a well established total synthesis. A 2.7 Å resolution structure of ustiloxin D bound to the vinca domain embedded in the complex of two tubulins with the stathmin-like domain of RB3 (T(2)R) has been determined. This finding precisely defines the interactions of ustiloxins with tubulin and, taken together with structures of other vinca-ligand complexes, allows structure-based suggestions to be made for improved activity. These comparisons also provide a rationale for the large-scale polymorphism of the protofilament-like assemblies mediated by vinca-domain ligands based on local differences in their interactions with the two tubulin heterodimers constituting their binding site.


Assuntos
Tubulina (Proteína)/química , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Encéfalo/metabolismo , Dimerização , Ligantes , Microtúbulos/química , Mitose , Micotoxinas/química , Peptídeos Cíclicos/química , Ligação Proteica , Estrutura Terciária de Proteína , Ovinos , Vimblastina/química
15.
J Biol Chem ; 287(37): 31085-94, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22791712

RESUMO

In cells, microtubule dynamics is regulated by stabilizing and destabilizing factors. Whereas proteins in both categories have been identified, their mechanism of action is rarely understood at the molecular level. This is due in part to the difficulties faced in structural approaches to obtain atomic models when tubulin is involved. Here, we design and characterize new stathmin-like domain (SLD) proteins that sequester tubulins in numbers different from two, the number of tubulins bound by stathmin or by the SLD of RB3, two stathmin family members that have been extensively studied. We established rules for the design of tight tubulin-SLD assemblies and applied them to complexes containing one to four tubulin heterodimers. Biochemical and structural experiments showed that the engineered SLDs behaved as expected. The new SLDs will be tools for structural studies of microtubule regulation. The larger complexes will be useful for cryo-electron microscopy, whereas crystallography or nuclear magnetic resonance will benefit from the 1:1 tubulin-SLD assembly. Finally, our results provide new insight into SLD function, suggesting that a major effect of these phosphorylatable proteins is the programmed release of sequestered tubulin for microtubule assembly at the specific cellular locations of members of the stathmin family.


Assuntos
Microtúbulos/química , Modelos Químicos , Multimerização Proteica/fisiologia , Tubulina (Proteína)/química , Animais , Microtúbulos/genética , Microtúbulos/metabolismo , Engenharia de Proteínas , Estrutura Terciária de Proteína , Estatmina/química , Estatmina/genética , Estatmina/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
16.
J Biol Chem ; 287(18): 15143-53, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22403406

RESUMO

The kinesin-13 Kif2C hydrolyzes ATP and uses the energy released to disassemble microtubules. The mechanism by which this is achieved remains elusive. Here we show that Kif2C-(sN+M), a monomeric construct consisting of the motor domain with the proximal part of the N-terminal Neck extension but devoid of its more distal, unstructured, and highly basic part, has a robust depolymerase activity. When detached from microtubules, the Kif2C-(sN+M) nucleotide-binding site is occupied by ATP at physiological concentrations of adenine nucleotides. As a consequence, Kif2C-(sN+M) starts its interaction with microtubules in that state, which differentiates kinesin-13s from motile kinesins. Moreover, in this ATP-bound conformational state, Kif2C-(sN+M) has a higher affinity for soluble tubulin compared with microtubules. We propose a mechanism in which, in the first step, the specificity of ATP-bound Kif2C for soluble tubulin causes it to stabilize a curved conformation of tubulin heterodimers at the ends of microtubules. Data from an ATPase-deficient Kif2C mutant suggest that, then, ATP hydrolysis precedes and is required for tubulin release to take place. Finally, comparison with Kif2C-Motor indicates that the binding specificity for curved tubulin and, accordingly, the microtubule depolymerase activity are conferred to the motor domain by its N-terminal Neck extension.


Assuntos
Trifosfato de Adenosina/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Multimerização Proteica , Tubulina (Proteína)/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Animais , Sítios de Ligação , Humanos , Hidrólise , Cinesinas/química , Cinesinas/genética , Microtúbulos/química , Microtúbulos/genética , Ligação Proteica , Suínos , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
17.
Proc Natl Acad Sci U S A ; 106(33): 13775-9, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666559

RESUMO

Structural changes occur in the alphabeta-tubulin heterodimer during the microtubule assembly/disassembly cycle. Their most prominent feature is a transition from a straight, microtubular structure to a curved structure. There is a broad range of small molecule compounds that disturbs the microtubule cycle, a class of which targets the colchicine-binding site and prevents microtubule assembly. This class includes compounds with very different chemical structures, and it is presently unknown whether they prevent tubulin polymerization by the same mechanism. To address this issue, we have determined the structures of tubulin complexed with a set of such ligands and show that they interfere with several of the movements of tubulin subunits structural elements upon its transition from curved to straight. We also determined the structure of tubulin unliganded at the colchicine site; this reveals that a beta-tubulin loop (termed T7) flips into this site. As with colchicine site ligands, this prevents a helix which is at the interface with alpha-tubulin from stacking onto a beta-tubulin beta sheet as in straight protofilaments. Whereas in the presence of these ligands the interference with microtubule assembly gets frozen, by flipping in and out the beta-subunit T7 loop participates in a reversible way in the resistance to straightening that opposes microtubule assembly. Our results suggest that it thereby contributes to microtubule dynamic instability.


Assuntos
Colchicina/química , Tubulina (Proteína)/química , Animais , Antineoplásicos/farmacologia , Encéfalo/metabolismo , Dimerização , Ligantes , Microtúbulos/metabolismo , Modelos Químicos , Conformação Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ovinos
18.
Methods Mol Med ; 137: 235-43, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18085233

RESUMO

Tubulin, the microtubule building-block, is the target of numerous small molecule compounds that interfere with microtubule dynamics. Several of these ligands are in clinical use as antitumor drugs. There have been numerous studies on these molecules, with two main objectives: to determine their mechanism of action and to find new compounds that would expand the arsenal available for cancer chemotherapy. Although these studies would undoubtedly benefit from structural data on tubulin, this protein has long resisted crystallization attempts. We have used stathmin-like domains (SLDs) of stathmin family proteins as a tool to crystallize tubulin and have obtained three-dimensional crystals of the tubulin:SLD complexes. As many tubulin ligands bind to these complexes, the crystals are valuable tools to study tubulin-drug interactions by X-ray crystallography. They open the way to a structure-based drug design approach.


Assuntos
Colchicina/química , Tubulina (Proteína)/química , Alcaloides de Vinca/química , Colchicina/farmacologia , Cristalização , Cristalografia por Raios X , Humanos , Ligantes , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/efeitos dos fármacos , Estrutura Terciária de Proteína , Estatmina/química , Estatmina/efeitos dos fármacos , Relação Estrutura-Atividade , Tubulina (Proteína)/efeitos dos fármacos , Alcaloides de Vinca/farmacologia
19.
Biochemistry ; 46(37): 10595-602, 2007 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-17711308

RESUMO

Microtubules are dynamically unstable tubulin polymers that interconvert stochastically between growing and shrinking states, a property central to their cellular functions. Following its incorporation in microtubules, tubulin hydrolyzes one GTP molecule. Microtubule dynamic instability depends on GTP hydrolysis so that this activity is crucial to the regulation of microtubule assembly. Tubulin also has a much lower GTPase activity in solution. We have used ternary complexes made of two tubulin molecules and one stathmin-like domain to investigate the mechanism of the tubulin GTPase activity in solution. We show that whereas stathmin-like domains and colchicine enhance this activity, it is inhibited by vinblastine and by the N-terminal part of stathmin-like domains. Taken together with the structures of the tubulin-colchicine-stathmin-like domain-vinblastine complex and of microtubules, our results lead to the conclusions that the tubulin-colchicine GTPase activity in solution is caused by tubulin-tubulin associations and that the residues involved in catalysis comprise the beta tubulin GTP binding site and alpha tubulin residues that participate in intermolecular interactions in protofilaments. This site resembles the one that has been proposed to give rise to GTP hydrolysis in microtubules. The widely different hydrolysis rates in these two sites result at least in part from the curved and straight tubulin assemblies in solution and in microtubules, respectively.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Estatmina/química , Tubulina (Proteína)/metabolismo , Animais , Bovinos , Colchicina/química , Colchicina/metabolismo , Ligantes , Podofilotoxina/química , Podofilotoxina/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Vimblastina/química , Vimblastina/metabolismo
20.
Biochemistry ; 44(44): 14616-25, 2005 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-16262261

RESUMO

Microtubules are major cytoskeletal components involved in numerous cellular functions such as mitosis, cell motility, or intracellular traffic. These cylindrical polymers of alphabeta-tubulin assemble in a closely regulated dynamic manner. We have shown that the stathmin family proteins sequester tubulin in a nonpolymerizable ternary complex, through their stathmin-like domains (SLD) and thus contribute to the regulation of microtubule dynamics. We demonstrate here that short peptides derived from the N-terminal part of SLDs impede tubulin polymerization with various efficiencies and that phosphorylation of the most potent of these peptides reduces its efficiency as in full-length stathmin. To understand the mechanism of action of these peptides, we undertook a NMR-based structural analysis of the peptide-tubulin interaction with the most efficient peptide (I19L). Our results show that, while disordered when free in solution, I19L folds into a beta-hairpin upon binding to tubulin. We further identified, by means of saturation transfer difference NMR, hydrophobic residues located on the beta2-strand of I19L that are involved in its tubulin binding. These structural data were used together with tubulin atomic coordinates from the tubulin/RB3-SLD crystal structure to model the I19L/tubulin interaction. The model agrees with I19L acting through an autonomous tubulin capping capability to impede tubulin polymerization and provides information to help understand the variation of efficiency against tubulin polymerization among the peptides tested. Altogether these results enlighten the mechanism of tubulin sequestration by SLDs, while they pave the way for the development of protein-based compounds aimed at interfering with tubulin polymerization.


Assuntos
Microtúbulos/metabolismo , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Estatmina/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Bovinos , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Estrutura Terciária de Proteína , Alinhamento de Sequência , Estatmina/química , Tubulina (Proteína)/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA