Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38853901

RESUMO

Epigenetic inhibitors exhibit powerful antiproliferative and anticancer activities. However, cellular responses to small-molecule epigenetic inhibition are heterogenous and dependent on factors such as the genetic background, metabolic state, and on-/off-target engagement of individual small-molecule drugs. To determine the mechanisms that drive these heterogeneous cellular responses, we quantified chromatin, proteome, and transcriptome remodeling due to histone deacetylase inhibitor (HDACi) -treated cells derived from diverse genetic backgrounds. We utilized high-throughput sample multiplexed proteomics and integrated intelligent data acquisition methods to map proteomes of cancer cell lines in response to HDACi. We determined cell type-specific and ubiquitous cellular responses based on the quantification of 10,621 total proteins. We then established how coordinated remodeling of the proteome, transcriptome and chromatin state of HDACi treated cancer cells revealed convergent (JUN, MAP2K3, CDKN1A) and divergent (CCND3, ASF1B, BRD7) molecular phenotypes. HDACi-regulated proteins differ greatly across cell lines owing to heterogeneous molecular states of these cell lines. Finally, we demonstrated that HDACi treatment drove a highly cell-type specific response that may in part be explained by cell line-specific off-target drug engagement.

2.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645018

RESUMO

Over-activation of the epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. However, EGFR-targeted therapies have led to minimal clinical response. While delivery of EGFR inhibitors (EGFRis) to the brain constitutes a major challenge, how additional drug-specific features alter efficacy remains poorly understood. We apply highly multiplex single-cell chemical genomics to define the molecular response of glioblastoma to EGFRis. Using a deep generative framework, we identify shared and drug-specific transcriptional programs that group EGFRis into distinct molecular classes. We identify programs that differ by the chemical properties of EGFRis, including induction of adaptive transcription and modulation of immunogenic gene expression. Finally, we demonstrate that pro-immunogenic expression changes associated with a subset of tyrphostin family EGFRis increase the ability of T-cells to target glioblastoma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA