Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Mol Ther ; 32(8): 2711-2727, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38943249

RESUMO

Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.


Assuntos
Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Antígenos HLA-E , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Anticorpos Monoclonais/farmacologia , Sistemas CRISPR-Cas , Deleção de Genes , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Citotoxicidade Imunológica
2.
BJS Open ; 7(5)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37855751

RESUMO

BACKGROUND: Understanding the early processes underlying intestinal anastomotic healing is crucial to comprehend the pathophysiology of anastomotic leakage. The aim of this study was to assess normal intestinal anastomotic healing and disturbed healing in rats to investigate morphological, cellular and intrinsic molecular changes in the anastomotic tissue. METHOD: Anastomoses were created in two groups of Wistar rats, using four sutures or 12 sutures to mimic anastomotic leakage and anastomotic healing respectively. At 6, 12, 24 hours and 2, 3, 5 and 7 days, anastomotic tissue was assessed macroscopically using the anastomotic complication score and histologically using the modified Ehrlich-Hunt score. Transcriptome analysis was performed to assess differences between anastomotic leakage and anastomotic healing at the first three time points to find affected genes and biological processes. RESULTS: Ninety-eight rats were operated on (49 animals in the anastomotic leakage and 49 in the anastomotic healing group) and seven rats analysed at each time point. None of the animals with 12 sutures developed anastomotic leakage macroscopically, whereas 35 of the 49 animals with four sutures developed anastomotic leakage. Histological analysis showed increasing influx of inflammatory cells up to 3 days in anastomotic healing and up to 7 days in anastomotic leakage, and this increase was significantly higher in anastomotic leakage at 5 (P = 0.041) and 7 days (P = 0.003). Transcriptome analyses revealed large differences between anastomotic leakage and anastomotic healing at 6 and 24 hours, mainly driven by an overall downregulation of genes in anastomotic leakage. CONCLUSION: Transcriptomic analyses revealed large differences between normal and disturbed healing at 6 hours after surgery, which might eventually serve as early-onset biomarkers for anastomotic leakage.


Assuntos
Fístula Anastomótica , Transcriptoma , Ratos , Humanos , Animais , Fístula Anastomótica/etiologia , Ratos Wistar , Anastomose Cirúrgica/efeitos adversos , Cicatrização/genética
3.
Macromol Biosci ; 23(10): e2300075, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37249127

RESUMO

Fibrosis of the filtering bleb is one of the main causes of failure after bleb-forming glaucoma surgery. Intraoperative application of mitomycin C (MMC) is the current gold standard to reduce the fibrotic response. However, MMC is cytotoxic and one-time application is often insufficient. A sustained-release drug delivery system (DDS), loaded with MMC, may be less cytotoxic and equally or more effective. Two degradable (polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA)) MMC-loaded DDSs are developed. Release kinetics are first assessed in vitro followed by rabbit implants in conjunction with the PRESERFLO MicroShunt. As a control, the MicroShunt is implanted with adjunctive use of a MMC solution. Rabbits are euthanized at postoperative day (POD) 28 and 90. The PLGA and PCL DDSs release (on average) 99% and 75% of MMC, respectively. All groups show functioning blebs until POD 90. Rabbits implanted with a DDS show more inflammation with avascular thin-walled blebs when compared to the control. However, collagen is more loosely arranged. The PLGA DDS shows less inflammation, less foreign body response (FBR), and more complete degradation at POD 90 when compared to the PCL DDS. Further optimization with regard to dosage is required to reduce side effects to the conjunctiva.

4.
Adv Biol (Weinh) ; 7(7): e2300051, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37102630

RESUMO

Lowering intraocular pressure (IOP) by placement of a glaucoma shunt is an effective treatment for glaucoma. However, fibrosis of the outflow site can hamper surgical outcome. In this study, the antifibrotic effect of adding an endplate (with or without microstructured surface topographies) to a microshunt made of poly(styrene-block-isobutylene-block-styrene) is investigated. New Zealand white rabbits are implanted with a control implant (without endplate) and modified implants. Afterward, bleb morphology and IOP is recorded for 30 days. After killing of the animals, eyes are collected for histology, Addition of an endplate extended bleb survival, Topography-990 has the longest recorded bleb-survival time. Histology reveals that the addition of an endplate increases the presence of myofibroblasts, macrophages, polymorphonuclear cells, and foreign body giant cells compared to the control. However, an increased capsule thickness and inflammatory response are observed in the groups with surface topographies, The addition of an endplate results in prolonged bleb survival, demonstrating that engineering of the shape of glaucoma implants could prolong bleb functionality. Future research should further elaborate the effect of surface topographies on long-term bleb survival, since an increased presence of pro-fibrotic cells and increased capsule thickness are observed compared to the control.


Assuntos
Implantes para Drenagem de Glaucoma , Glaucoma , Animais , Coelhos , Implantes para Drenagem de Glaucoma/efeitos adversos , Glaucoma/cirurgia , Pressão Intraocular , Olho , Fibrose , Estirenos
5.
Haematologica ; 108(7): 1873-1885, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475519

RESUMO

The co-stimulatory CD40-CD40L dyad plays an important role in chronic inflammatory diseases associated with aging. Although CD40 is mainly expressed by immune cells, CD40 is also present on adipocytes. We aimed to delineate the role of adipocyte CD40 in the aging hematopoietic system and evaluated the effects of adipocyte CD40 deficiency on cardiometabolic diseases. Adult adipocyte CD40-deficient mice (AdiCD40KO) mice had a decrease in bone marrow hematopoietic stem cells (Lin-Sca+cKit+, LSK) and common lymphoid progenitors, which was associated with increased bone marrow adiposity and T-cell activation, along with elevated plasma corticosterone levels, a phenotype that became more pronounced with age. Atherosclerotic AdiCD40koApoE-/- (CD40AKO) mice also displayed changes in the LSK population, showing increased myeloid and lymphoid multipotent progenitors, and augmented corticosterone levels. Increased T-cell activation could be observed in bone marrow, spleen, and adipose tissue, while the numbers of B cells were decreased. Although atherosclerosis was reduced in CD40AKO mice, plaques contained more activated T cells and larger necrotic cores. Analysis of peripheral adipose tissue in a diet-induced model of obesity revealed that obese AdiCD40KO mice had increased T-cell activation in adipose tissue and lymphoid organs, but decreased weight gain and improved insulin sensitivity, along with increased fat oxidation. In conclusion, adipocyte CD40 plays an important role in maintaining immune cell homeostasis in bone marrow during aging and chronic inflammatory diseases, particularly of the lymphoid populations. Although adipocyte CD40 deficiency reduces atherosclerosis burden and ameliorates diet-induced obesity, the accompanying T-cell activation may eventually aggravate cardiometabolic diseases.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Camundongos , Corticosterona/farmacologia , Adipócitos , Obesidade , Inflamação , Antígenos CD40/genética , Ligante de CD40 , Hematopoese , Camundongos Endogâmicos C57BL
7.
Front Immunol ; 12: 716357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489968

RESUMO

Lifestyle- and genetically induced disorders related to disturbances in cholesterol metabolism have shown the detrimental impact of excessive cholesterol levels on a plethora of pathological processes such as inflammation. In this context, two-hydroxypropyl-ß-cyclodextrin (CD) is increasingly considered as a novel pharmacological compound to decrease cellular cholesterol levels due to its ability to increase cholesterol solubility. However, recent findings have reported contra-indicating events after the use of CD questioning the clinical applicability of this compound. Given its potential as a therapeutic compound in metabolic inflammatory diseases, in this study, we evaluated the inflammatory effects of CD administration in the context of cholesterol-induced metabolic inflammation in vivo and in vitro. The inflammatory and cholesterol-depleting effects of CD were first investigated in low-density lipoprotein receptor knockout (Ldlr-/ ) mice that were transplanted with Npc1nih or Npc1wt bone marrow and were fed either regular chow or a high-fat, high-cholesterol (HFC) diet for 12 weeks, thereby creating an extreme model of lysosomal cholesterol-induced metabolic inflammation. In the final three weeks, these mice received daily injections of either control (saline) or CD subcutaneously. Subsequently, the inflammatory properties of CD were investigated in vitro in two macrophage cell lines and in murine bone marrow-derived macrophages (BMDMs). While CD administration improved cholesterol mobilization outside lysosomes in BMDMs, an overall pro-inflammatory profile was observed after CD treatment, evidenced by increased hepatic inflammation in vivo and a strong increase in cytokine release and inflammatory gene expression in vitro in murine BMDMs and macrophages cell lines. Nevertheless, this CD-induced pro-inflammatory profile was time-dependent, as short term exposure to CD did not result in a pro-inflammatory response in BMDM. While CD exerts desired cholesterol-depleting effects, its inflammatory effect is dependent on the exposure time. As such, using CD in the clinic, especially in a metabolic inflammatory context, should be closely monitored as it may lead to undesired, pro-inflammatory side effects.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Inflamação/etiologia , 2-Hidroxipropil-beta-Ciclodextrina/efeitos adversos , Animais , Biomarcadores , Linhagem Celular , Colesterol/sangue , Colesterol/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo
8.
Clin Transl Med ; 11(6): e458, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185408

RESUMO

BACKGROUND: While single-omics analyses on human atherosclerotic plaque have been very useful to map stage- or disease-related differences in expression, they only partly capture the array of changes in this tissue and suffer from scale-intrinsic limitations. In order to better identify processes associated with intraplaque hemorrhage and plaque instability, we therefore combined multiple omics into an integrated model. METHODS: In this study, we compared protein and gene makeup of low- versus high-risk atherosclerotic lesion segments from carotid endarterectomy patients, as judged from the absence or presence of intraplaque hemorrhage, respectively. Transcriptomic, proteomic, and peptidomic data of this plaque cohort were aggregated and analyzed by DIABLO, an integrative multivariate classification and feature selection method. RESULTS: We identified a protein-gene associated multiomics model able to segregate stable, nonhemorrhaged from vulnerable, hemorrhaged lesions at high predictive performance (AUC >0.95). The dominant component of this model correlated with αSMA- PDGFRα+ fibroblast-like cell content (p = 2.4E-05) and Arg1+ macrophage content (p = 2.2E-04) and was driven by serum response factor (SRF), possibly in a megakaryoblastic leukemia-1/2 (MKL1/2) dependent manner. Gene set overrepresentation analysis on the selected key features of this model pointed to a clear cardiovascular disease signature, with overrepresentation of extracellular matrix synthesis and organization, focal adhesion, and cholesterol metabolism terms, suggestive of the model's relevance for the plaque vulnerability. Finally, we were able to corroborate the predictive power of the selected features in several independent mRNA and proteomic plaque cohorts. CONCLUSIONS: In conclusion, our integrative omics study has identified an intraplaque hemorrhage-associated cardiovascular signature that provides excellent stratification of low- from high-risk carotid artery plaques in several independent cohorts. Further study revealed suppression of an SRF-regulated disease network, controlling lesion stability, in vulnerable plaque, which can serve as a scaffold for the design of targeted intervention in plaque destabilization.


Assuntos
Aterosclerose/patologia , Biomarcadores/metabolismo , Redes Reguladoras de Genes , Peptídeos/metabolismo , Proteoma/metabolismo , Fator de Resposta Sérica/metabolismo , Transcriptoma , Aterosclerose/genética , Aterosclerose/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Peptídeos/análise , Prognóstico , Proteoma/análise , Fator de Resposta Sérica/genética
9.
Nat Commun ; 11(1): 6296, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293558

RESUMO

Macrophages represent a major immune cell population in atherosclerotic plaques and play central role in the progression of this lipid-driven chronic inflammatory disease. Targeting immunometabolism is proposed as a strategy to revert aberrant macrophage activation to improve disease outcome. Here, we show ATP citrate lyase (Acly) to be activated in inflammatory macrophages and human atherosclerotic plaques. We demonstrate that myeloid Acly deficiency induces a stable plaque phenotype characterized by increased collagen deposition and fibrous cap thickness, along with a smaller necrotic core. In-depth functional, lipidomic, and transcriptional characterization indicate deregulated fatty acid and cholesterol biosynthesis and reduced liver X receptor activation within the macrophages in vitro. This results in macrophages that are more prone to undergo apoptosis, whilst maintaining their capacity to phagocytose apoptotic cells. Together, our results indicate that targeting macrophage metabolism improves atherosclerosis outcome and we reveal Acly as a promising therapeutic target to stabilize atherosclerotic plaques.


Assuntos
ATP Citrato (pro-S)-Liase/deficiência , Macrófagos/metabolismo , Placa Aterosclerótica/imunologia , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/genética , Idoso , Animais , Apoptose/imunologia , Colesterol/biossíntese , Colágeno/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos/biossíntese , Feminino , Fibrose , Perfilação da Expressão Gênica , Humanos , Lipidômica , Lipogênese/imunologia , Receptores X do Fígado/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Masculino , Camundongos Knockout , Necrose/imunologia , Necrose/patologia , Fagocitose , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia
10.
Front Immunol ; 11: 570963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162986

RESUMO

The inhibitory immunoreceptor SIRPα is expressed on myeloid and neuronal cells and interacts with the broadly expressed CD47. CD47-SIRPα interactions form an innate immune checkpoint and its targeting has shown promising results in cancer patients. Here, we report expression of SIRPα on B1 lymphocytes, a subpopulation of murine B cells responsible for the production of natural antibodies. Mice defective in SIRPα signaling (SIRPαΔCYT mice) displayed an enhanced CD11b/CD18 integrin-dependent B1 cell migration from the peritoneal cavity to the spleen, local B1 cell accumulation, and enhanced circulating natural antibody levels, which was further amplified upon immunization with T-independent type 2 antigen. As natural antibodies are atheroprotective, we investigated the involvement of SIRPα signaling in atherosclerosis development. Bone marrow (SIRPαΔCYT>LDLR-/-) chimaeric mice developed reduced atherosclerosis accompanied by increased natural antibody production. Collectively, our data identify SIRPα as a unique B1 cell inhibitory receptor acting to control B1 cell migration, and imply SIRPα as a potential therapeutic target in atherosclerosis.


Assuntos
Aterosclerose/imunologia , Linfócitos B/imunologia , Antígeno CD47/metabolismo , Tecido Linfoide/imunologia , Receptores Imunológicos/metabolismo , Animais , Formação de Anticorpos , Autoanticorpos/metabolismo , Movimento Celular , Células Cultivadas , Citocinas/metabolismo , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Imunológicos/genética , Receptores de LDL/genética , Células Th1/imunologia , Quimeras de Transplante
11.
Front Immunol ; 11: 594603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574814

RESUMO

Macrophages define a key component of immune cells present in atherosclerotic lesions and are central regulators of the disease. Since epigenetic processes are important in controlling macrophage function, interfering with epigenetic pathways in macrophages might be a novel approach to combat atherosclerosis. Histone H3K27 trimethylation is a repressive histone mark catalyzed by polycomb repressive complex with EZH2 as the catalytic subunit. EZH2 is described to increase macrophage inflammatory responses by supressing the suppressor of cytokine signaling, Socs3. We previously showed that myeloid deletion of Kdm6b, an enzymes that in contrast to EZH2 removes repressive histone H3K27me3 marks, results in advanced atherosclerosis. Because of its opposing function and importance of EZH2 in macrophage inflammatory responses, we here studied the role of myeloid EZH2 in atherosclerosis. A myeloid-specific Ezh2 deficient mouse strain (Ezh2del) was generated (LysM-cre+ x Ezh2fl/fl) and bone marrow from Ezh2del or Ezh2wt mice was transplanted to Ldlr-/- mice which were fed a high fat diet for 9 weeks to study atherosclerosis. Atherosclerotic lesion size was significantly decreased in Ezh2del transplanted mice compared to control. The percentage of macrophages in the atherosclerotic lesion was similar, however neutrophil numbers were lower in Ezh2del transplanted mice. Correspondingly, the migratory capacity of neutrophils was decreased in Ezh2del mice. Moreover, peritoneal Ezh2del foam cells showed a reduction in the inflammatory response with reduced production of nitric oxide, IL-6 and IL-12. In Conclusion, myeloid Ezh2 deficiency impairs neutrophil migration and reduces macrophage foam cell inflammatory responses, both contributing to reduced atherosclerosis.


Assuntos
Aterosclerose/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste/deficiência , Células Espumosas/imunologia , Animais , Aterosclerose/genética , Aterosclerose/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/imunologia , Células Espumosas/patologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Knockout , Especificidade de Órgãos
12.
Sci Rep ; 9(1): 14547, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601924

RESUMO

The anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) plays an important role in survival and differentiation of leukocytes, more specifically of neutrophils. Here, we investigated the impact of myeloid Mcl-1 deletion in atherosclerosis. Western type diet fed LDL receptor-deficient mice were transplanted with either wild-type (WT) or LysMCre Mcl-1fl/fl (Mcl-1-/-) bone marrow. Mcl-1 myeloid deletion resulted in enhanced apoptosis and lipid accumulation in atherosclerotic plaques. In vitro, Mcl-1 deficient macrophages also showed increased lipid accumulation, resulting in increased sensitivity to lipid-induced cell death. However, plaque size, necrotic core and macrophage content were similar in Mcl-1-/- compared to WT mice, most likely due to decreased circulating and plaque-residing neutrophils. Interestingly, Mcl-1-/- peritoneal foam cells formed up to 45% more multinucleated giant cells (MGCs) in vitro compared to WT, which concurred with an increased MGC presence in atherosclerotic lesions of Mcl-1-/- mice. Moreover, analysis of human unstable atherosclerotic lesions also revealed a significant inverse correlation between MGC lesion content and Mcl-1 gene expression, coinciding with the mouse data. Taken together, these findings suggest that myeloid Mcl-1 deletion leads to a more apoptotic, lipid and MGC-enriched phenotype. These potentially pro-atherogenic effects are however counteracted by neutropenia in circulation and plaque.


Assuntos
Apoptose , Células Gigantes/citologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células 3T3 , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Diferenciação Celular , Deleção de Genes , Humanos , Imuno-Histoquímica , Lipídeos/química , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neutrófilos/metabolismo , Fenótipo , Placa Aterosclerótica/metabolismo
13.
BMJ Open Diabetes Res Care ; 7(1): e000829, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31908798

RESUMO

Objective: Obesity-associated metabolic dysfunction increases the risk of multiple diseases such as type 2 diabetes and cardiovascular disease. The importance of the co-stimulatory CD40-CD40L dyad in diet-induced obesity (DIO), with opposing phenotypes arising when either the receptor (aggravating) or the ligand (protective) is deleted, has been described previously. The functions of CD40 and CD40L are cell type dependent. As co-stimulation via T cell-mediated CD40L is essential for driving inflammation, we here investigate the role of T cell CD40L in DIO. Research design and methods: CD4CreCD40Lfl/fl mice on a C57BL/6 background were generated and subjected to DIO by administration of 15 weeks of high fat diet (HFD). Results: HFD-fed CD4CreCD40Lfl/fl mice had similar weight gain, adipocyte sizes, plasma cholesterol and triglyceride levels as their wild-type (WT) counterparts. Insulin and glucose tolerance were comparable, although CD4CreCD40Lfl/fl mice did have a decreased plasma insulin concentration, suggesting a minor improvement of insulin resistance. Furthermore, although the degree of hepatosteatosis was similar in both genotypes, the gene expression of fatty acid synthase 1 and ATP-citrate lyase had decreased, whereas expression of peroxisome proliferator-activated receptor-α had increased in livers of CD4CreCD40Lfl/fl mice, suggesting decreased hepatic lipid uptake in absence of T cell CD40L.Moreover, CD4CreCD40Lfl/fl mice displayed significantly lower numbers of effector memory CD4+ T cells and regulatory T cells in blood and lymphoid organs compared with WT. However, immune cell composition and inflammatory status of the adipose tissue was similar in CD4CreCD40Lfl/fl and WT mice. Conclusions: T cell CD40L deficiency results in a minor improvement of insulin sensitivity and hepatic steatosis in DIO, despite the strong decrease in effector T cells and regulatory T cells in blood and lymphoid organs. Our data indicate that other CD40L-expressing cell types are more relevant in the pathogenesis of obesity-associated metabolic dysfunction.


Assuntos
Tecido Adiposo/imunologia , Ligante de CD40/fisiologia , Inflamação/patologia , Resistência à Insulina , Doenças Metabólicas/patologia , Obesidade/patologia , Linfócitos T/imunologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Linfócitos T/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Aumento de Peso
14.
PLoS One ; 13(8): e0202150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30096208

RESUMO

Obesity is a low-grade inflammatory disease that increases the risk for metabolic disorders. CD40-CD40L signaling plays a central role in obesity-induced inflammation. Genetic deficiency of CD40L in diet-induced obesity (DIO) ameliorates adipose tissue inflammation, hepatic steatosis and increases insulin sensitivity. Unexpectedly, absence of CD40 worsened insulin resistance and caused excessive adipose tissue inflammation and hepatosteatosis. To investigate whether deficiency of macrophage CD40 is responsible for the phenotype observed in the CD40-/- mice, we generated CD40flflLysMcre and fed them a standard (SFD) and 54% high fat obesogenic diet (HFD) for 13 weeks. No differences in body weight, adipose tissue weight, adipocyte size, plasma cholesterol or triglyceride levels could be observed between CD40flflLysMcre and wild type (WT) mice. CD40flflLysMcre displayed no changes in glucose tolerance or insulin resistance, but had higher plasma adiponectin levels when fed a SFD. Liver weights, liver cholesterol and triglyceride levels, as well as the degree of hepatosteatosis were not affected by absence of macrophage CD40. CD40flflLysMcre mice displayed a minor increase in adipose tissue leukocyte infiltration on SFD and HFD, which did not result in differences in adipose tissue cytokine levels. We here show that loss of macrophage CD40 signaling does not affect obesity induced metabolic dysregulation and indicates that CD40-deficiency on other cell-types than the macrophage is responsible for the metabolic dysregulation, adipose tissue inflammation and hepatosteatosis that are observed in CD40-/- mice.


Assuntos
Antígenos CD40/metabolismo , Metabolismo Energético , Macrófagos/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Adipócitos/metabolismo , Adipocinas , Tecido Adiposo/metabolismo , Animais , Biomarcadores , Peso Corporal , Ligante de CD40/metabolismo , Dieta , Glucose/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos
15.
J Surg Res ; 229: 271-276, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29937000

RESUMO

BACKGROUND: Hernia repair is one of the most frequently performed operations. In search of the ideal mesh for hernia repair, animal research is required. Although rats are most often used in experimental mesh experiments, no correlation with clinical findings in humans has ever been shown. Therefore, the aim of our study was to investigate whether adhesion formation and foreign body reactions to meshes in rats are comparable with the reactions in humans. MATERIALS AND METHODS: A fixed type of mesh was implanted intraperitoneally in a group of 10 rats and 10 patients undergoing elective, temporary stoma formation. In case of the latter, meshes were placed around the stoma. After a follow-up period of 12 wk in rats and after a median follow-up of 6 mo in humans, samples of the mesh were collected. Adhesion assessments were performed, and (immuno-) histochemical evaluation was performed by a specialized experimental pathologist and an experienced clinical pathologist. RESULTS: After the follow-up period, adhesion formation did not differ significantly between rats and humans. Moreover, general inflammation scores were comparable, although granulocytes and giant cells were more present in rats, compared with humans. On the other hand, the presence of fibrosis was more evident in humans compared with rats. CONCLUSIONS: To our knowledge, this is the first study, which showed that a specific animal model, namely a rat model, correlates with adhesion formation and the foreign body reaction to meshes in humans. It can be recommended to use rats in future experimental mesh for incisional hernia research.


Assuntos
Modelos Animais de Doenças , Reação a Corpo Estranho/patologia , Hérnia Abdominal/cirurgia , Herniorrafia/efeitos adversos , Ratos , Telas Cirúrgicas/efeitos adversos , Aderências Teciduais/patologia , Parede Abdominal/patologia , Parede Abdominal/cirurgia , Idoso , Animais , Feminino , Fibrose , Seguimentos , Reação a Corpo Estranho/etiologia , Herniorrafia/instrumentação , Humanos , Masculino , Pessoa de Meia-Idade , Cavidade Peritoneal/patologia , Ratos Wistar , Especificidade da Espécie , Aderências Teciduais/etiologia
16.
Sci Rep ; 7(1): 12550, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970532

RESUMO

Despite the consistent rise of non-alcoholic steatohepatitis (NASH) worldwide, the mechanisms that govern the inflammatory aspect of this disease remain unknown. Previous research showed an association between hepatic inflammation and lysosomal lipid accumulation in blood-derived hepatic macrophages. Additionally, in vitro findings indicated that lipids, specifically derived from the oxidized low-density lipoprotein (oxLDL) particle, are resistant to removal from lysosomes. On this basis, we investigated whether lysosomal lipid accumulation in blood-derived hepatic macrophages is causally linked to hepatic inflammation and assessed to what extent increasing anti-oxLDL IgM autoantibodies can affect this mechanism. By creating a proof-of-concept mouse model, we demonstrate a causal role for lysosomal lipids in blood-derived hepatic macrophages in mediating hepatic inflammation and initiation of fibrosis. Furthermore, our findings show that increasing anti-oxLDL IgM autoantibody levels reduces inflammation. Hence, therapies aimed at improving lipid-induced lysosomal dysfunction and blocking oxLDL-formation deserve further investigation in the context of NASH.


Assuntos
Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Autoanticorpos/uso terapêutico , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Imunoglobulina M/biossíntese , Imunoglobulina M/imunologia , Inflamação/sangue , Inflamação/complicações , Inflamação/terapia , Células de Kupffer/metabolismo , Lipídeos/sangue , Lipoproteínas LDL/antagonistas & inibidores , Lipoproteínas LDL/imunologia , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Macrófagos/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/terapia
17.
Int J Colorectal Dis ; 32(7): 961-965, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28536898

RESUMO

BACKGROUND: Tissue adhesives (TA) may be useful to strengthen colorectal anastomoses, thereby preventing anastomotic leakage (AL). Previous studies have identified cyanoacrylate (CA) TAs as the most promising colonic anastomotic sealants. This study investigates the protective effects of sealing colonic anastomoses with various CAs. MATERIALS AND METHODS: Fifty-five Wistar rats underwent laparotomy and transection of the proximal colon. An anastomosis was created with 4 interrupted sutures followed by either application of Histoacryl Flexible, Omnex, Glubran 2, or no TA seal. An additional control group was included with a 12-suture anastomosis and no TA seal. After 7 days, the rats were sacrificed and scored for the presence of AL as the main outcome. Secondary outcomes were the occurrence of bowel obstruction, adhesions, and anastomotic bursting pressure. Histological evaluation was performed. RESULTS: The highest AL rate was found in the Glubran 2 group (7/11), followed by the 4-sutures group without TA (5/11), and the Omnex group (5/11). Histoacryl Flexible showed the lowest AL rate (2/11). In the control group, only one rat showed signs of AL. Histologically, the highest influx of inflammatory cells was found in the 4-suture group without TA and for Omnex and Glubran 2. Histoacryl Flexible caused more mature collagen deposition when compared to the other TA groups. CONCLUSIONS: Histoacryl Flexible showed the lowest leakage rate compared to the other TA groups and to the 4-suture control group. Glubran 2 showed the highest AL rate and a high inflammatory response. Histoacryl Flexible was associated with the presence of more mature collagen and seems to promote anastomotic healing.


Assuntos
Anastomose Cirúrgica/efeitos adversos , Fístula Anastomótica/tratamento farmacológico , Fístula Anastomótica/prevenção & controle , Colo/cirurgia , Adesivos Teciduais/uso terapêutico , Fístula Anastomótica/etiologia , Animais , Colágeno/metabolismo , Colo/efeitos dos fármacos , Cianoacrilatos/farmacologia , Cianoacrilatos/uso terapêutico , Masculino , Pressão , Ratos Wistar , Adesivos Teciduais/farmacologia , Resultado do Tratamento
18.
J Neuroinflammation ; 14(1): 105, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28494768

RESUMO

BACKGROUND: The influx of leukocytes into the central nervous system (CNS) is a key hallmark of the chronic neuro-inflammatory disease multiple sclerosis (MS). Strategies that aim to inhibit leukocyte migration across the blood-brain barrier (BBB) are therefore regarded as promising therapeutic approaches to combat MS. As the CD40L-CD40 dyad signals via TNF receptor-associated factor 6 (TRAF6) in myeloid cells to induce inflammation and leukocyte trafficking, we explored the hypothesis that specific inhibition of CD40-TRAF6 interactions can ameliorate neuro-inflammation. METHODS: Human monocytes were treated with a small molecule inhibitor (SMI) of CD40-TRAF6 interactions (6877002), and migration capacity across human brain endothelial cells was measured. To test the therapeutic potential of the CD40-TRAF6-blocking SMI under neuro-inflammatory conditions in vivo, Lewis rats and C57BL/6J mice were subjected to acute experimental autoimmune encephalomyelitis (EAE) and treated with SMI 6877002 for 6 days (rats) or 3 weeks (mice). RESULTS: We here show that a SMI of CD40-TRAF6 interactions (6877002) strongly and dose-dependently reduces trans-endothelial migration of human monocytes. Moreover, upon SMI treatment, monocytes displayed a decreased production of ROS, tumor necrosis factor (TNF), and interleukin (IL)-6, whereas the production of the anti-inflammatory cytokine IL-10 was increased. Disease severity of EAE was reduced upon SMI treatment in rats, but not in mice. However, a significant reduction in monocyte-derived macrophages, but not in T cells, that had infiltrated the CNS was eminent in both models. CONCLUSIONS: Together, our results indicate that SMI-mediated inhibition of the CD40-TRAF6 pathway skews human monocytes towards anti-inflammatory cells with reduced trans-endothelial migration capacity, and is able to reduce CNS-infiltrated monocyte-derived macrophages during neuro-inflammation, but minimally ameliorates EAE disease severity. We therefore conclude that SMI-mediated inhibition of the CD40-TRAF6 pathway may represent a beneficial treatment strategy to reduce monocyte recruitment and macrophage activation in the CNS and has the potential to be used as a co-treatment to combat MS.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antígenos CD40/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Monócitos/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Cerebelo/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Monócitos/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Óxido Nítrico Sintase Tipo I/metabolismo , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Endogâmicos Lew , Espécies Reativas de Oxigênio/metabolismo , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Sci Rep ; 6: 38278, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922112

RESUMO

Non-alcoholic steatohepatitis (NASH) is characterized by liver lipid accumulation and inflammation. The mechanisms that trigger hepatic inflammation are poorly understood and subsequently, no specific non-invasive markers exist. We previously demonstrated a reduction in the plasma lysosomal enzyme, cathepsin D (CatD), in children with NASH compared to children without NASH. Recent studies have raised the concept that non-alcoholic fatty liver disease (NAFLD) in adults is distinct from children due to a different histological pattern in the liver. Yet, the link between plasma CatD to adult NASH was not examined. In the current manuscript, we investigated whether plasma CatD in adults correlates with NASH development and regression. Biopsies were histologically evaluated for inflammation and NAFLD in three complementary cohorts of adults (total n = 248). CatD and alanine aminotransferase (ALT) were measured in plasma. Opposite to our previous observations with childhood NASH, we observed increased levels of plasma CatD in patients with NASH compared to adults without hepatic inflammation. Furthermore, after surgical intervention, we found a reduction of plasma CatD compared to baseline. Our observations highlight a distinct pathophysiology between NASH in children and adults. The observation that plasma CatD correlated with NASH development and regression is promising for NASH diagnosis.


Assuntos
Catepsina D/sangue , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Adulto , Alanina Transaminase/sangue , Biomarcadores/sangue , Biópsia , Estudos de Coortes , Feminino , Humanos , Inflamação , Fígado/patologia , Fígado/cirurgia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/cirurgia , Índice de Gravidade de Doença
20.
PLoS One ; 11(11): e0167199, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898698

RESUMO

Non-alcoholic steatohepatitis (NASH) is characterized by liver steatosis and inflammation. Currently, the underlying mechanisms leading to hepatic inflammation are not fully understood and consequently, therapeutic options are poor. Non-alcoholic steatohepatitis (NASH) and atherosclerosis share the same etiology whereby macrophages play a key role in disease progression. Macrophage function can be modulated via activation of receptor-ligand binding of Notch signaling. Relevantly, global inhibition of Notch ligand Delta-Like Ligand-4 (DLL4) attenuates atherosclerosis by altering the macrophage-mediated inflammatory response. However, the specific contribution of macrophage DLL4 to hepatic inflammation is currently unknown. We hypothesized that myeloid DLL4 deficiency in low-density lipoprotein receptor knock-out (Ldlr-/-) mice reduces hepatic inflammation. Irradiated Ldlr-/- mice were transplanted (tp) with bone marrow from wild type (Wt) or DLL4f/fLysMCre+/0 (DLL4del) mice and fed either chow or high fat, high cholesterol (HFC) diet for 11 weeks. Additionally, gene expression was assessed in bone marrow-derived macrophages (BMDM) of DLL4f/fLysMCreWT and DLL4f/fLysMCre+/0 mice. In contrast to our hypothesis, inflammation was not decreased in HFC-fed DLL4del-transplanted mice. In line, in vitro, there was no difference in the expression of inflammatory genes between DLL4-deficient and wildtype bone marrow-derived macrophages. These results suggest that myeloid DLL4 deficiency does not contribute to hepatic inflammation in vivo. Since, macrophage-DLL4 expression in our model was not completely suppressed, it can't be totally excluded that complete DLL4 deletion in macrophages might lead to different results. Nevertheless, the contribution of non-myeloid Kupffer cells to notch signaling with regard to the pathogenesis of steatohepatitis is unknown and as such it is possible that, DLL4 on Kupffer cells promote the pathogenesis of steatohepatitis.


Assuntos
Modelos Animais de Doenças , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/patologia , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Receptores de LDL/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Células Cultivadas , Inflamação/etiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA