Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bone ; 177: 116921, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769955

RESUMO

BACKGROUND: All musculoskeletal tissues are in a constant state of turnover, with a dynamic equilibrium between tissue protein synthesis and breakdown rates. The synthesis of protein allows musculoskeletal tissues to heal following injury. Yet, impaired tissue healing is observed following certain injuries, such as geriatric hip fractures. It is assumed that the regenerative properties of femoral head bone tissue are compromised following an intracapsular hip fracture and therefore hip replacement surgery is normally performed. However, the actual impact on in vivo bone protein synthesis rates has never been determined. DESIGN: In the present study, 10 patients (age: 79 ± 10 y, BMI: 24 ± 4 kg/m2) with an acute (<24 h) intracapsular hip fracture received a primed continuous intravenous infusion of L-[ring-13C6]-phenylalanine before and throughout their hip replacement surgery. Trabecular and cortical bone tissue from both the femoral head and proximal femur were sampled during surgery to assess protein synthesis rates of affected (femoral head) and unaffected (proximal femur) bone tissue, respectively. In addition, tissue samples of gluteus maximus muscle, synovium, ligamentum teres, and femoral head cartilage were collected. Tissue-specific protein synthesis rates were assessed by measuring L-[ring-13C6]-phenylalanine incorporation in tissue protein. RESULTS: Femoral head trabecular bone protein synthesis rates (0.056 [0.024-0.086] %/h) were lower when compared to proximal femur trabecular bone protein synthesis rates (0.081 [0.056-0.118] %/h; P = 0.043). Cortical bone protein synthesis rates did not differ between the femoral head and proximal femur (0.041 [0.021-0.078] and 0.045 [0.028-0.073] %/h, respectively; P > 0.05). Skeletal muscle, synovium, ligamentum teres, and femoral head cartilage protein synthesis rates averaged 0.080 [0.048-0.089], 0.093 [0.051-0.130], 0.121 [0.110-0.167], and 0.023 [0.015-0.039] %/h, respectively. CONCLUSION: In contrast to the general assumption that the femoral head is avital after an intracapsular displaced hip fracture in the elderly, our data show that bone protein synthesis is still ongoing in femoral head bone tissue during the early stages following an intracapsular hip fracture in older patients. Nonetheless, trabecular bone protein synthesis rates are lower in the femoral head when compared to the proximal femur in older patients following an acute intracapsular hip fracture. Trial register no: NL9036.

2.
Am J Clin Nutr ; 112(2): 303-317, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359142

RESUMO

BACKGROUND: Protein ingestion increases skeletal muscle protein synthesis rates during recovery from endurance exercise. OBJECTIVES: We aimed to determine the effect of graded doses of dietary protein co-ingested with carbohydrate on whole-body protein metabolism, and skeletal muscle myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates during recovery from endurance exercise. METHODS: In a randomized, double-blind, parallel-group design, 48 healthy, young, endurance-trained men (mean ± SEM age: 27 ± 1 y) received a primed continuous infusion of l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine and ingested 45 g carbohydrate with either 0 (0 g PRO), 15 (15 g PRO), 30 (30 g PRO), or 45 (45 g PRO) g intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled milk protein after endurance exercise. Blood and muscle biopsy samples were collected over 360 min of postexercise recovery to assess whole-body protein metabolism and both MyoPS and MitoPS rates. RESULTS: Protein intake resulted in ∼70%-74% of the ingested protein-derived phenylalanine appearing in the circulation. Whole-body net protein balance increased dose-dependently after ingestion of 0, 15, 30, or 45 g protein (mean ± SEM: -0.31± 0.16, 5.08 ± 0.21, 10.04 ± 0.30, and 13.49 ± 0.55 µmol phenylalanine · kg-1 · h-1, respectively; P < 0.001). 30 g PRO stimulated a ∼46% increase in MyoPS rates (%/h) compared with 0 g PRO and was sufficient to maximize MyoPS rates after endurance exercise. MitoPS rates were not increased after protein ingestion; however, incorporation of dietary protein-derived l-[1-13C]-phenylalanine into de novo mitochondrial protein increased dose-dependently after ingestion of 15, 30, and 45 g protein at 360 min postexercise (0.018 ± 0.002, 0.034 ± 0.002, and 0.046 ± 0.003 mole percentage excess, respectively; P < 0.001). CONCLUSIONS: Protein ingested after endurance exercise is efficiently digested and absorbed into the circulation. Whole-body net protein balance and dietary protein-derived amino acid incorporation into mitochondrial protein respond to increasing protein intake in a dose-dependent manner. Ingestion of 30 g protein is sufficient to maximize MyoPS rates during recovery from a single bout of endurance exercise.This trial was registered at trialregister.nl as NTR5111.


Assuntos
Proteínas Alimentares/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Adulto , Aminoácidos/sangue , Aminoácidos/metabolismo , Proteínas Alimentares/análise , Método Duplo-Cego , Treino Aeróbico , Exercício Físico , Humanos , Masculino
3.
PLoS One ; 14(11): e0224745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31697717

RESUMO

Skeletal muscle plasticity is reflected by a dynamic balance between protein synthesis and breakdown, with basal muscle tissue protein synthesis rates ranging between 0.02 and 0.09%/h. Though it is evident that other musculoskeletal tissues should also express some level of plasticity, data on protein synthesis rates of most of these tissues in vivo in humans is limited. Six otherwise healthy patients (62±3 y), scheduled to undergo unilateral total knee arthroplasty, were subjected to primed continuous intravenous infusions with L-[ring-13C6]-Phenylalanine throughout the surgical procedure. Tissue samples obtained during surgery included muscle, tendon, cruciate ligaments, cartilage, bone, menisci, fat, and synovium. Tissue-specific fractional protein synthesis rates (%/h) were assessed by measuring the incorporation of L-[ring-13C6]-Phenylalanine in tissue protein and were compared with muscle tissue protein synthesis rates using a paired t test. Tendon, bone, cartilage, Hoffa's fat pad, anterior and posterior cruciate ligament, and menisci tissue protein synthesis rates averaged 0.06±0.01, 0.03±0.01, 0.04±0.01, 0.11±0.03, 0.07±0.02, 0.04±0.01, and 0.04±0.01%/h, respectively, and did not significantly differ from skeletal muscle protein synthesis rates (0.04±0.01%/h; P>0.05). Synovium derived protein (0.13±0.03%/h) and intercondylar notch bone tissue protein synthesis rates (0.03±0.01%/h) were respectively higher and lower compared to skeletal muscle protein synthesis rates (P<0.05 and P<0.01, respectively). Basal protein synthesis rates in various musculoskeletal tissues are within the same range of skeletal muscle protein synthesis rates, with fractional muscle, tendon, bone, cartilage, ligament, menisci, fat, and synovium protein synthesis rates ranging between 0.02 and 0.13% per hour in vivo in humans. Clinical trial registration: NTR5147.


Assuntos
Osso e Ossos/metabolismo , Cartilagem/metabolismo , Ligamentos/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Tendões/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenilalanina/metabolismo , Ligação Proteica
4.
Front Physiol ; 9: 1220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233398

RESUMO

Muscle loss is a severe complication of many medical conditions such as cancer, cardiac failure, muscular dystrophies, and nerve damage. The contribution of myofibrillar protein synthesis (MPS) to the loss of muscle mass after nerve damage is not clear. Using deuterium oxide (D2O) labeling, we demonstrate that MPS is significantly increased in rat m.tibialis anterior (TA) compared to control (3.23 ± 0.72 [damaged] to 2.09 ± 0.26%∗day-1 [control]) after 4 weeks of nerve constriction injury. This is the case despite substantial loss of mass of the TA (350 ± 96 mg [damaged] to 946 ± 361 mg [control]). We also show that expression of regulatory proteins involved with MPS (p70s6k1: 2.4 ± 0.3 AU [damaged] to 1.8 ± 0.2 AU [control]) and muscle protein breakdown (MPB) (MAFbx: 5.3 ± 1.2 AU [damaged] to 1.4 ± 0.4 AU [control]) are increased in nerve damaged muscle. Furthermore, the expression of p70s6k1 correlates with MPS rates (r2 = 0.57). In conclusion, this study shows that severe muscle wasting following nerve damage is accompanied by increased as opposed to decreased MPS.

5.
J Nutr ; 148(11): 1723-1732, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247714

RESUMO

Background: The proposed benefits of protein supplementation on the skeletal muscle adaptive response to resistance exercise training in older adults remain unclear. Objective: The present study assessed whether protein supplementation after exercise and before sleep augments muscle mass and strength gains during resistance exercise training in older individuals. Methods: Forty-one older men [mean ± SEM age: 70 ± 1 y; body mass index (kg/m2): 25.3 ± 0.4] completed 12 wk of whole-body resistance exercise training (3 sessions/wk) and were randomly assigned to ingest either protein (21 g protein, 3 g total leucine, 9 g carbohydrate, 3 g fat; n = 21) or an energy-matched placebo (0 g protein, 25 g carbohydrate, 6 g fat; n = 20) after exercise and each night before sleep. Maximal strength was assessed by 1-repetition-maximum (1RM) strength testing, and muscle hypertrophy was assessed at the whole-body (dual-energy X-ray absorptiometry), upper leg (computed tomography scan), and muscle fiber (biopsy) levels. Muscle protein synthesis rates were assessed during week 12 of training with the use of deuterated water (2H2O) administration. Results: Leg-extension 1RM increased in both groups (placebo: 88 ± 3 to 104 ± 4 kg; protein: 85 ± 3 to 102 ± 4 kg; P < 0.001), with no differences between groups. Quadriceps cross-sectional area (placebo: 67.8 ± 1.7 to 73.5 ± 2.0 cm2; protein: 68.4 ± 1.4 to 72.3 ± 1.4 cm2; P < 0.001) increased in both groups, with no differences between groups. Muscle fiber hypertrophy occurred in type II muscle fibers (placebo: 5486 ± 418 to 6492 ± 429 µm2; protein: 5367 ± 301 to 6259 ± 391 µm2; P < 0.001), with no differences between groups. Muscle protein synthesis rates were 1.62% ± 0.06% and 1.57% ± 0.05%/d in the placebo and protein groups, respectively, with no differences between groups. Conclusion: Protein supplementation after exercise and before sleep does not further augment skeletal muscle mass or strength gains during resistance exercise training in active older men. This study was registered at the Netherlands Trial Registry (www.trialregister.nl) as NTR5082.


Assuntos
Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Exercício Físico/fisiologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Sono/fisiologia , Idoso , Aminoácidos , Cromo , Esquema de Medicação , Humanos , Masculino , Ácidos Nicotínicos
6.
J Appl Physiol (1985) ; 113(6): 896-902, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22815390

RESUMO

We aimed to assess the reliability of the single biopsy approach for calculating muscle protein synthesis rates compared with the well described sequential muscle biopsy approach following a primed continuous infusion of L-[ring-(2)H(5)]phenylalanine and GC-MS analysis in older men. Two separate experimental infusion protocols, with differing stable isotope amino acid incorporation times, were employed consisting of n = 27 (experiment 1) or n = 9 (experiment 2). Specifically, mixed muscle protein FSR were calculated from baseline plasma protein enrichments and muscle protein enrichments obtained at 90 min or 50 min (1BX SHORT), 210 min or 170 min (1BX LONG), and between the muscle protein enrichments obtained at 90 and 210 min or 50 min and 170 min (2BX) of the infusion for experiments 1 and 2, respectively. In experiment 2, we also assessed the error that is introduced to the single muscle biopsy approach when nontracer naive subjects are recruited for participation in a primed continuous infusion of isotope-labeled amino acids. In experiment 1, applying the individual plasma protein enrichment values to the single muscle biopsy approach resulted in no differences in muscle protein FSR between the 1BX SHORT (0.031 ± 0.003%·h(-1)), 1BX LONG (0.032 ± 0.002%·h(-1)), or the 2BX approach (0.034 ± 0.002%·h(-1)). A significant correlation in muscle protein FSR was observed only between the 1BX LONG and 2BX approach (r = 0.8; P < 0.001). Similar results were observed in experiment 2. In addition, using the single biopsy approach in nontracer naïve state results in a muscle protein FSR that is negative for both the 1BX SHORT (-0.67 ± 0.051%·h(-1)) and 1BX LONG (-0.19 ± 0.051%·h(-1)) approaches. This is the first study to demonstrate that the single biopsy approach, coupled with the background enrichment of L-[ring-(2)H(5)]-phenylalanine of mixed plasma proteins, generates data that are similar to using the sequential muscle biopsy approach in the elderly population.


Assuntos
Biópsia/métodos , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Fatores Etários , Idoso , Proteínas Sanguíneas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Infusões Intravenosas , Marcação por Isótopo , Cinética , Masculino , Fenilalanina/administração & dosagem , Fenilalanina/metabolismo , Reprodutibilidade dos Testes
7.
Metabolism ; 61(7): 931-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22209666

RESUMO

It has recently been proposed that basal muscle protein synthesis can be effectively assessed by measuring the background enrichment in total plasma protein, thereby omitting the initial biopsy, and determining the difference in enrichment from a single muscle biopsy obtained during a primed continuous infusion of isotope-labeled amino acids. We determined the reliability of calculating basal mixed muscle protein fractional synthetic rates (FSRs) from mixed plasma proteins and a single muscle biopsy compared against the sequential muscle biopsy approach. Ten men (age, 23 ± 1 years; body mass index, 22 ± 1 kg∙m(-2)) received muscle biopsies of the vastus lateralis after 2 and 4 hours of a primed continuous infusion of l-[ring-(13)C(6)]phenylalanine. Mixed muscle protein FSR was calculated from baseline plasma enrichments and muscle protein enrichments determined from the biopsy at 2 hours (1BX SHORT) or 4 hours (1BX LONG), or between muscle protein enrichments at 2 and 4 hours (2BX) of the infusion. No differences (P = .50) were observed in mixed muscle protein FSR, using plasma [ring-(13)C(6)]phenylalanine enrichments as the precursor, between the 1BX SHORT (0.031% ± 0.010%∙h(-1)), 1BX LONG (0.032% ± 0.007%∙h(-1)), or 2BX (0.035% ± 0.011%∙h(-1)) approach. A significant correlation was observed between the calculated muscle protein FSR assessed using the 1BX LONG and 2BX approach (r = 0.7, P = .02). Our data demonstrate that the single-biopsy approach, irrespective of whether the biopsy is obtained at 2 or 4 hours, can be used as a surrogate for the sequential-biopsy approach to determine basal muscle protein synthesis in a group.


Assuntos
Biópsia/métodos , Proteínas Musculares/biossíntese , Adulto , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Humanos , Marcação por Isótopo , Masculino , Fenilalanina/metabolismo , Músculo Quadríceps/metabolismo , Reprodutibilidade dos Testes , Adulto Jovem
8.
Am J Clin Nutr ; 93(5): 997-1005, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21367943

RESUMO

BACKGROUND: Sarcopenia has been attributed to a diminished muscle protein synthetic response to food intake. Differences in digestion and absorption kinetics of dietary protein, its amino acid composition, or both have been suggested to modulate postprandial muscle protein accretion. OBJECTIVE: The objective was to compare protein digestion and absorption kinetics and subsequent postprandial muscle protein accretion after ingestion of whey, casein, and casein hydrolysate in healthy older adults. DESIGN: A total of 48 older men aged 74 ± 1 y (mean ± SEM) were randomly assigned to ingest a meal-like amount (20 g) of intrinsically l-[1-(13)C]phenylalanine-labeled whey, casein, or casein hydrolysate. Protein ingestion was combined with continuous intravenous l-[ring-(2)H(5)]phenylalanine infusion to assess in vivo digestion and absorption kinetics of dietary protein. Postprandial mixed muscle protein fractional synthetic rates (FSRs) were calculated from the ingested tracer. RESULTS: The peak appearance rate of dietary protein-derived phenylalanine in the circulation was greater with whey and casein hydrolysate than with casein (P < 0.05). FSR values were higher after whey (0.15 ± 0.02%/h) than after casein (0.08 ± 0.01%/h; P < 0.01) and casein hydrolysate (0.10 ± 0.01%/h; P < 0.05) ingestion. A strong positive correlation (r = 0.66, P < 0.01) was observed between peak plasma leucine concentrations and postprandial FSR values. CONCLUSIONS: Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. This effect is attributed to a combination of whey's faster digestion and absorption kinetics and higher leucine content. This trial was registered at clinicaltrials.gov as NCT00557388.


Assuntos
Proteínas do Leite/uso terapêutico , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Período Pós-Prandial , Sarcopenia/dietoterapia , Idoso , Algoritmos , Bebidas , Biópsia por Agulha , Caseínas/química , Caseínas/uso terapêutico , Digestão , Humanos , Absorção Intestinal , Cinética , Leucina/análise , Leucina/sangue , Leucina/uso terapêutico , Masculino , Proteínas do Leite/química , Fenilalanina/sangue , Fenilalanina/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/uso terapêutico , Sarcopenia/metabolismo , Proteínas do Soro do Leite
9.
Am J Physiol Endocrinol Metab ; 295(1): E70-7, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18430966

RESUMO

In contrast to the effect of nutritional intervention on postexercise muscle protein synthesis, little is known about the potential to modulate protein synthesis during exercise. This study investigates the effect of protein coingestion with carbohydrate on muscle protein synthesis during resistance-type exercise. Ten healthy males were studied in the evening after they consumed a standardized diet throughout the day. Subjects participated in two experiments in which they ingested either carbohydrate or carbohydrate with protein during a 2-h resistance exercise session. Subjects received a bolus of test drink before and every 15 min during exercise, providing 0.15 g x kg(-1) x h(-1) carbohydrate with (CHO + PRO) or without (CHO) 0.15 g x kg(-1) x h(-1) protein hydrolysate. Continuous intravenous infusions with l-[ring-(13)C(6)]phenylalanine and l-[ring-(2)H(2)]tyrosine were applied, and blood and muscle biopsies were collected to assess whole body and muscle protein synthesis rates during exercise. Protein coingestion lowered whole body protein breakdown rates by 8.4 +/- 3.6% (P = 0.066), compared with the ingestion of carbohydrate only, and augmented protein oxidation and synthesis rates by 77 +/- 17 and 33 +/- 3%, respectively (P < 0.01). As a consequence, whole body net protein balance was negative in CHO, whereas a positive net balance was achieved after the CHO + PRO treatment (-4.4 +/- 0.3 vs. 16.3 +/- 0.4 micromol phenylalanine x kg(-1) x h(-1), respectively; P < 0.01). In accordance, mixed muscle protein fractional synthetic rate was 49 +/- 22% higher after protein coingestion (0.088 +/- 0.012 and 0.060 +/- 0.004%/h in CHO + PRO vs. CHO treatment, respectively; P < 0.05). We conclude that, even in a fed state, protein coingestion stimulates whole body and muscle protein synthesis rates during resistance-type exercise.


Assuntos
Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Aptidão Física/fisiologia , Adulto , Aminoácidos de Cadeia Ramificada/sangue , Biópsia , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/metabolismo , Humanos , Masculino , Fenilalanina/sangue , Biossíntese de Proteínas , Distribuição Aleatória , Tirosina/sangue
10.
Pflugers Arch ; 454(4): 635-47, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17333244

RESUMO

Using contemporary stable-isotope methodology and fluorescence microscopy, we assessed the impact of carbohydrate supplementation on whole-body and fiber-type-specific intramyocellular triacylglycerol (IMTG) and glycogen use during prolonged endurance exercise. Ten endurance-trained male subjects were studied twice during 3 h of cycling at 63 +/- 4% of maximal O(2) uptake with either glucose ingestion (CHO trial; 0.7 g CHO kg(-1) h(-1)) or without (CON placebo trial; water only). Continuous infusions with [U-(13)C] palmitate and [6,6-(2)H(2)] glucose were applied to quantify plasma free fatty acids (FFA) and glucose oxidation rates and to estimate intramyocellular lipid and glycogen use. Before and after exercise, muscle biopsy samples were taken to quantify fiber-type-specific IMTG and glycogen content. Plasma glucose rate of appearance (R (a)) and carbohydrate oxidation rates were substantially greater in the CHO vs CON trial. Carbohydrate supplementation resulted in a lower muscle glycogen use during the first hour of exercise in the CHO vs CON trial, resulting in a 38 +/- 19 and 57 +/- 22% decreased utilization in type I and II muscle-fiber glycogen content, respectively. In the CHO trial, both plasma FFA R (a) and subsequent plasma FFA concentrations were lower, resulting in a 34 +/- 12% reduction in plasma FFA oxidation rates during exercise (P < 0.05). Carbohydrate intake did not augment IMTG utilization, as fluorescence microscopy revealed a 76 +/- 21 and 78 +/- 22% reduction in type I muscle-fiber lipid content in the CHO and CON trial, respectively. We conclude that carbohydrate supplementation during prolonged cycling exercise does not modulate IMTG use but spares muscle glycogen use during the initial stages of exercise in endurance-trained men.


Assuntos
Carboidratos da Dieta/farmacologia , Exercício Físico/fisiologia , Glicogênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Músculo Esquelético/metabolismo , Adulto , Biópsia , Glicemia/metabolismo , Carboidratos da Dieta/metabolismo , Teste de Esforço , Ácidos Graxos não Esterificados/metabolismo , Humanos , Insulina/metabolismo , Lactatos/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Descanso/fisiologia , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA