Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Oncol ; 14: 1428182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015503

RESUMO

Introduction: While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Methods: Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Results: Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Discussion: Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

3.
bioRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746333

RESUMO

While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

4.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38545623

RESUMO

The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem. Here we mine large scale MM proteogenomic data integrating it with MM cell line dependency screen, and drug sensitivity data to identify druggable targets and forecast treatment efficacy and resistance. Leveraging protein profiles from established MM subtypes and molecular structures of 82 cancer treatment drugs, we identified nine candidate hub proteins, mTOR, FYN, PIK3CB, EGFR, MAPK3, MAP4K1, MAP2K1, SRC and AKT1, across five distinct MM subtypes. These proteins serve as potential drug targets applicable to one or multiple MM subtypes. By analyzing transcriptomic data from 48 publicly accessible melanoma cell lines sourced from Achilles and CRISPR dependency screens, we forecasted 162 potentially targetable genes. We also identified genetic resistance in 260 genes across at least one melanoma subtype. In addition, we employed publicly available compound sensitivity data (Cancer Therapeutics Response Portal, CTRPv2) on the cell lines to assess the correlation of compound effectiveness within each subtype. We have identified 20 compounds exhibiting potential drug impact in at least one melanoma subtype. Remarkably, employing this unbiased approach, we have uncovered compounds targeting ferroptosis, that demonstrate a striking 30x fold difference in sensitivity among different subtypes. This implies that the proteogenomic classification of melanoma has the potential to predict sensitivity to ferroptosis compounds. Our results suggest innovative and novel therapeutic strategies by stratifying melanoma samples through proteomic profiling, offering a spectrum of novel therapeutic interventions and prospects for combination therapy. Highlights: (1) Proteogenomic subtype classification can define the landscape of genetic dependencies in melanoma (2) Nine proteins from molecular subtypes were identified as potential drug targets for specified MM patients (3) 20 compounds identified that show potential effectiveness in at least one melanoma subtype (4) Proteogenomics can predict specific ferroptosis inducers, HDAC, and RTK Inhibitor sensitivity in melanoma subtypes.

5.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542426

RESUMO

Glioblastoma, a type of cancer affecting the central nervous system, is characterized by its poor prognosis and the dynamic alteration of its metabolic phenotype to fuel development and progression. Critical to cellular metabolism, mitochondria play a pivotal role, where the acetylation of lysine residues on mitochondrial enzymes emerges as a crucial regulatory mechanism of protein function. This post-translational modification, which negatively impacts the mitochondrial proteome's functionality, is modulated by the enzyme sirtuin 3 (SIRT3). Aiming to elucidate the regulatory role of SIRT3 in mitochondrial metabolism within glioblastoma, we employed high-resolution mass spectrometry to analyze the proteome and acetylome of two glioblastoma cell lines, each exhibiting distinct metabolic behaviors, following the chemical inhibition of SIRT3. Our findings reveal that the protein synthesis machinery, regulated by lysine acetylation, significantly influences the metabolic phenotype of these cells. Moreover, we have shed light on potential novel SIRT3 targets, thereby unveiling new avenues for future investigations. This research highlights the critical function of SIRT3 in mitochondrial metabolism and its broader implications for cellular energetics. It also provides a comparative analysis of the proteome and acetylome across glioblastoma cell lines with opposing metabolic phenotypes.


Assuntos
Glioblastoma , Sirtuína 3 , Humanos , Sirtuína 3/metabolismo , Proteoma/metabolismo , Lisina/metabolismo , Glioblastoma/metabolismo , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Fenótipo , Acetilação , Proteínas Mitocondriais/metabolismo
7.
Acta Neuropathol Commun ; 11(1): 150, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715247

RESUMO

The hippocampus is a primary region affected in Alzheimer's disease (AD). Because AD postmortem brain tissue is not available prior to symptomatic stage, we lack understanding of early cellular pathogenic mechanisms. To address this issue, we examined the cellular origin and progression of AD pathogenesis by comparing patient-based model systems including iPSC-derived brain cells transplanted into the mouse brain hippocampus. Proteomic analysis of the graft enabled the identification of pathways and network dysfunction in AD patient brain cells, associated with increased levels of Aß-42 and ß-sheet structures. Interestingly, the host cells surrounding the AD graft also presented alterations in cellular biological pathways. Furthermore, proteomic analysis across human iPSC-based models and human post-mortem hippocampal tissue projected coherent longitudinal cellular changes indicative of early to end stage AD cellular pathogenesis. Our data showcase patient-based models to study the cell autonomous origin and progression of AD pathogenesis.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Humanos , Proteômica , Autopsia , Hipocampo
8.
Cancer Res ; 82(21): 3932-3949, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054547

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest malignancies and potentially curable only with radical surgical resection at early stages. The tumor microenvironment has been shown to be central to the development and progression of PDAC. A better understanding of how early human PDAC metabolically communicates with its environment and differs from healthy pancreas could help improve PDAC diagnosis and treatment. Here we performed deep proteomic analyses from diagnostic specimens of operable, treatment-naïve PDAC patients (n = 14), isolating four tissue compartments by laser-capture microdissection: PDAC lesions, tumor-adjacent but morphologically benign exocrine glands, and connective tissues neighboring each of these compartments. Protein and pathway levels were compared between compartments and with control pancreatic proteomes. Selected targets were studied immunohistochemically in the 14 patients and in additional tumor microarrays, and lipid deposition was assessed by nonlinear label-free imaging (n = 16). Widespread downregulation of pancreatic secretory functions was observed, which was paralleled by high cholesterol biosynthetic activity without prominent lipid storage in the neoplastic cells. Stromal compartments harbored ample blood apolipoproteins, indicating abundant microvasculature at the time of tumor removal. The features best differentiating the tumor-adjacent exocrine tissue from healthy control pancreas were defined by upregulation of proteins related to lipid transport. Importantly, histologically benign exocrine regions harbored the most significant prognostic pathways, with proteins involved in lipid transport and metabolism, such as neutral cholesteryl ester hydrolase 1, associating with shorter survival. In conclusion, this study reveals prognostic molecular changes in the exocrine tissue neighboring pancreatic cancer and identifies enhanced lipid transport and metabolism as its defining features. SIGNIFICANCE: In clinically operable pancreatic cancer, regions distant from malignant cells already display proteomic changes related to lipid transport and metabolism that affect prognosis and may be pharmacologically targeted.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteômica , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Lipídeos , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
9.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328746

RESUMO

PMCA4 is a critical regulator of Ca2+ homeostasis in mammalian cells. While its biological and prognostic relevance in several cancer types has already been demonstrated, only preclinical investigations suggested a metastasis suppressor function in melanoma. Therefore, we studied the expression pattern of PMCA4 in human skin, nevus, as well as in primary and metastatic melanoma using immunohistochemistry. Furthermore, we analyzed the prognostic power of PMCA4 mRNA levels in cutaneous melanoma both at the non-metastatic stage as well as after PD-1 blockade in advanced disease. PMCA4 localizes to the plasma membrane in a differentiation dependent manner in human skin and mucosa, while nevus cells showed no plasma membrane staining. In contrast, primary cutaneous, choroidal and conjunctival melanoma cells showed specific plasma membrane localization of PMCA4 with a wide range of intensities. Analyzing the TCGA cohort, PMCA4 mRNA levels showed a gender specific prognostic impact in stage I-III melanoma. Female patients with high transcript levels had a significantly longer progression-free survival. Melanoma cell specific PMCA4 protein expression is associated with anaplasticity in melanoma lung metastasis but had no impact on survival after lung metastasectomy. Importantly, high PMCA4 transcript levels derived from RNA-seq of cutaneous melanoma are associated with significantly longer overall survival after PD-1 blockade. In summary, we demonstrated that human melanoma cells express PMCA4 and PMCA4 transcript levels carry prognostic information in a gender specific manner.


Assuntos
Melanoma , Nevo , Neoplasias Cutâneas , Animais , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Mamíferos/metabolismo , Melanoma/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Prognóstico , Receptor de Morte Celular Programada 1/metabolismo , RNA Mensageiro , Neoplasias Cutâneas/genética , Melanoma Maligno Cutâneo
10.
Cancer Genomics Proteomics ; 19(2): 241-258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35181591

RESUMO

BACKGROUND/AIM: To date, several proteomics studies in cervical cancer (CC) have focused mainly on squamous cervical cancer (SCC). Our study aimed to discover and clarify differences in SCC and CAD that may provide valuable information for the identification of proteins involved in tumor progression, in CC as a whole, or specific for SCC or CAD. MATERIALS AND METHODS: Total protein extracts from 15 individual samples corresponding to 5 different CC tissue types were compared with a non-cancerous control group using bidimensional liquid chromatography-mass spectrometry (2D LC-MS/MS), isobaric tags for relative and absolute quantitation (ITRAQ), principal component analysis (PCA) and gene set enrichment analysis (GSEA). RESULTS: A total of 622 statistically significant different proteins were detected. Exocytosis-related proteins were the most over-represented, accounting for 25% of the identified and quantified proteins. Based on the experimental results, reticulocalbin 3 (RCN3) and Ras-related protein Rab-14 (RAB14) were chosen for further downstream in vitro and vivo analyses. RCN3 was overexpressed in all CC tissues compared to the control and RAB14 was overexpressed in squamous cervical cancer (SCC) compared to invasive cervical adenocarcinoma (CAD). In the tumor xenograft experiment, RAB14 protein expression was positively correlated with increased tumor size. In addition, RCN3-expressing HeLa cells induced a discrete size increment compared to control, at day 47 after inoculation. CONCLUSION: RAB14 and RCN3 are suggested as potential biomarkers and therapeutic targets in the treatment of CC.


Assuntos
Proteômica , Neoplasias do Colo do Útero , Cromatografia Líquida/métodos , Feminino , Células HeLa , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Neoplasias do Colo do Útero/genética , Proteínas rab de Ligação ao GTP/genética
11.
Cancers (Basel) ; 13(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885093

RESUMO

Malignant melanoma is one of the most aggressive skin cancers with high potential of visceral dissemination. Since the information about melanoma genomics is mainly based on primary tumors and lymphatic or skin metastases, an autopsy-based visceral metastasis biobank was established. We used copy number variation arrays (N = 38 samples) to reveal organ specific alterations. Results were partly completed by proteomic analysis. A significant increase of high-copy number gains was found in an organ-specific manner, whereas copy number losses were predominant in brain metastases, including the loss of numerous DNA damage response genes. Amplification of many immune genes was also observed, several of them are novel in melanoma, suggesting that their ectopic expression is possibly underestimated. This "immunogenic mimicry" was exclusive for lung metastasis. We also provided evidence for the possible autocrine activation of c-MET, especially in brain and lung metastases. Furthermore, frequent loss of 9p21 locus in brain metastases may predict higher metastatic potential to this organ. Finally, a significant correlation was observed between BRAF gene copy number and mutant allele frequency, mainly in lung metastases. All of these events may influence therapy efficacy in an organ specific manner, which knowledge may help in alleviating difficulties caused by resistance.

12.
Cancers (Basel) ; 13(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34885173

RESUMO

Melanoma in advanced stages is one of the most aggressive tumors and the deadliest of skin cancers. To date, the histopathological staging focuses on tumor thickness, and clinical staging is a major estimate of the clinical behavior of primary melanoma. Here we report on an observational study with in-depth molecular profiling at the protein level including post-translational modifications (PTMs) on eleven primary tumors from melanoma patients. Global proteomics, phosphoproteomics, and acetylomics were performed on each sample. We observed an up-regulation of key mitochondrial functions, including the mitochondrial translation machinery and the down-regulation of structural proteins involved in cell adhesion, the cytoskeleton organization, and epidermis development, which dictates the progression of the disease. Additionally, the PTM level pathways related to RNA processing and transport, as well as chromatin organization, were dysregulated in relation to the progression of melanoma. Most of the pathways dysregulated in this cohort were enriched in genes differentially expressed at the transcript level when similar groups are compared or metastasis to primary melanomas. At the genome level, we found significant differences in the mutation profiles between metastatic and primary melanomas. Our findings also highlighted sex-related differences in the molecular profiles. Remarkably, primary melanomas in women showed higher levels of antigen processing and presentation, and activation of the immune system response. Our results provide novel insights, relevant for developing personalized precision treatments for melanoma patients.

13.
Cancers (Basel) ; 13(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885218

RESUMO

The discovery of novel protein biomarkers in melanoma is crucial. Our introduction of formalin-fixed paraffin-embedded (FFPE) tumor protocol provides new opportunities to understand the progression of melanoma and open the possibility to screen thousands of FFPE samples deposited in tumor biobanks and available at hospital pathology departments. In our retrospective biobank pilot study, 90 FFPE samples from 77 patients were processed. Protein quantitation was performed by high-resolution mass spectrometry and validated by histopathologic analysis. The global protein expression formed six sample clusters. Proteins such as TRAF6 and ARMC10 were upregulated in clusters with enrichment for shorter survival, and proteins such as AIFI1 were upregulated in clusters with enrichment for longer survival. The cohort's heterogeneity was addressed by comparing primary and metastasis samples, as well comparing clinical stages. Within immunotherapy and targeted therapy subgroups, the upregulation of the VEGFA-VEGFR2 pathway, RNA splicing, increased activity of immune cells, extracellular matrix, and metabolic pathways were positively associated with patient outcome. To summarize, we were able to (i) link global protein expression profiles to survival, and they proved to be an independent prognostic indicator, as well as (ii) identify proteins that are potential predictors of a patient's response to immunotherapy and targeted therapy, suggesting new opportunities for precision medicine developments.

14.
Front Immunol ; 12: 750665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712240

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia worldwide. In AD, neurodegeneration spreads throughout different areas of the central nervous system (CNS) in a gradual and predictable pattern, causing progressive memory decline and cognitive impairment. Deposition of neurofibrillary tangles (NFTs) in specific CNS regions correlates with the severity of AD and constitutes the basis for disease classification into different Braak stages (I-VI). Early clinical symptoms are typically associated with stages III-IV (i.e., limbic stages) when the involvement of the hippocampus begins. Histopathological changes in AD have been linked to brain proteome alterations, including aberrant posttranslational modifications (PTMs) such as the hyperphosphorylation of Tau. Most proteomic studies to date have focused on AD progression across different stages of the disease, by targeting one specific brain area at a time. However, in AD vulnerable regions, stage-specific proteomic alterations, including changes in PTM status occur in parallel and remain poorly characterized. Here, we conducted proteomic, phosphoproteomic, and acetylomic analyses of human postmortem tissue samples from AD (Braak stage III-IV, n=11) and control brains (n=12), covering all anatomical areas affected during the limbic stage of the disease (total hippocampus, CA1, entorhinal and perirhinal cortices). Overall, ~6000 proteins, ~9000 unique phosphopeptides and 221 acetylated peptides were accurately quantified across all tissues. Our results reveal significant proteome changes in AD brains compared to controls. Among others, we have observed the dysregulation of pathways related to the adaptive and innate immune responses, including several altered antimicrobial peptides (AMPs). Notably, some of these changes were restricted to specific anatomical areas, while others altered according to disease progression across the regions studied. Our data highlights the molecular heterogeneity of AD and the relevance of neuroinflammation as a major player in AD pathology. Data are available via ProteomeXchange with identifier PXD027173.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteoma/metabolismo , Acetilação , Idoso , Idoso de 80 Anos ou mais , Peptídeos Antimicrobianos/metabolismo , Progressão da Doença , Encefalite/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/metabolismo , Fosforilação , Proteômica
16.
Clin Transl Med ; 11(7): e451, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34323402

RESUMO

The MM500 meta-study aims to establish a knowledge basis of the tumor proteome to serve as a complement to genome and transcriptome studies. Somatic mutations and their effect on the transcriptome have been extensively characterized in melanoma. However, the effects of these genetic changes on the proteomic landscape and the impact on cellular processes in melanoma remain poorly understood. In this study, the quantitative mass-spectrometry-based proteomic analysis is interfaced with pathological tumor characterization, and associated with clinical data. The melanoma proteome landscape, obtained by the analysis of 505 well-annotated melanoma tumor samples, is defined based on almost 16 000 proteins, including mutated proteoforms of driver genes. More than 50 million MS/MS spectra were analyzed, resulting in approximately 13,6 million peptide spectrum matches (PSMs). Altogether 13 176 protein-coding genes, represented by 366 172 peptides, in addition to 52 000 phosphorylation sites, and 4 400 acetylation sites were successfully annotated. This data covers 65% and 74% of the predicted and identified human proteome, respectively. A high degree of correlation (Pearson, up to 0.54) with the melanoma transcriptome of the TCGA repository, with an overlap of 12 751 gene products, was found. Mapping of the expressed proteins with quantitation, spatiotemporal localization, mutations, splice isoforms, and PTM variants was proven not to be predicted by genome sequencing alone. The melanoma tumor molecular map was complemented by analysis of blood protein expression, including data on proteins regulated after immunotherapy. By adding these key proteomic pillars, the MM500 study expands the knowledge on melanoma disease.


Assuntos
Melanoma/patologia , Proteoma/metabolismo , Proteômica/métodos , Transcriptoma , Antineoplásicos/uso terapêutico , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Bases de Dados Factuais , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Mutação , Processamento de Proteína Pós-Traducional/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Espectrometria de Massas em Tandem
17.
Clin Transl Med ; 11(7): e473, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34323403

RESUMO

The MM500 study is an initiative to map the protein levels in malignant melanoma tumor samples, focused on in-depth histopathology coupled to proteome characterization. The protein levels and localization were determined for a broad spectrum of diverse, surgically isolated melanoma tumors originating from multiple body locations. More than 15,500 proteoforms were identified by mass spectrometry, from which chromosomal and subcellular localization was annotated within both primary and metastatic melanoma. The data generated by global proteomic experiments covered 72% of the proteins identified in the recently reported high stringency blueprint of the human proteome. This study contributes to the NIH Cancer Moonshot initiative combining detailed histopathological presentation with the molecular characterization for 505 melanoma tumor samples, localized in 26 organs from 232 patients.


Assuntos
Melanoma/patologia , Proteoma/análise , Proteômica/métodos , Neoplasias Cutâneas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Melanoma/metabolismo , Pessoa de Meia-Idade , Neoplasias Cutâneas/metabolismo , Espectrometria de Massas em Tandem , Adulto Jovem , Melanoma Maligno Cutâneo
18.
J Proteome Res ; 20(1): 1027-1039, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301673

RESUMO

Well-characterized archival formalin-fixed paraffin-embedded (FFPE) tissues are of much value for prospective biomarker discovery studies, and protocols that offer high throughput and good reproducibility are essential in proteomics. Therefore, we implemented efficient paraffin removal and protein extraction from FFPE tissues followed by an optimized two-enzyme digestion using suspension trapping (S-Trap). The protocol was then combined with TMTpro 16plex labeling and applied to lung adenocarcinoma patient samples. In total, 9585 proteins were identified, and proteins related to the clinical outcome were detected. Because acetylation is known to play a major role in cancer development, a fast on-trap acetylation protocol was developed for studying endogenous lysine acetylation, which allows identification and localization of the lysine acetylation together with quantitative comparison between samples. We demonstrated that FFPE tissues are equivalent to frozen tissues to study the degree of acetylation between patients. In summary, we present a reproducible sample preparation workflow optimized for FFPE tissues that resolves known proteomic-related challenges. We demonstrate compatibility of the S-Trap with isobaric labeling and for the first time, we prove that it is feasible to study endogenous lysine acetylation stoichiometry in FFPE tissues, contributing to better utility of the existing global tissue archives. The MS proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifiers PXD020157, PXD021986, and PXD021964.


Assuntos
Proteoma , Proteômica , Formaldeído , Humanos , Inclusão em Parafina , Estudos Prospectivos , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Reprodutibilidade dos Testes , Fixação de Tecidos , Fluxo de Trabalho
19.
Cancers (Basel) ; 12(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213878

RESUMO

Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.

20.
Cell Biol Toxicol ; 36(3): 261-272, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31599373

RESUMO

In the advanced stages, malignant melanoma (MM) has a very poor prognosis. Due to tremendous efforts in cancer research over the last 10 years, and the introduction of novel therapies such as targeted therapies and immunomodulators, the rather dark horizon of the median survival has dramatically changed from under 1 year to several years. With the advent of proteomics, deep-mining studies can reach low-abundant expression levels. The complexity of the proteome, however, still surpasses the dynamic range capabilities of current analytical techniques. Consequently, many predicted protein products with potential biological functions have not yet been verified in experimental proteomic data. This category of 'missing proteins' (MP) is comprised of all proteins that have been predicted but are currently unverified. As part of the initiative launched in 2016 in the USA, the European Cancer Moonshot Center has performed numerous deep proteomics analyses on samples from MM patients. In this study, nine MPs were clearly identified by mass spectrometry in MM metastases. Some MPs significantly correlated with proteins that possess identical PFAM structural domains; and other MPs were significantly associated with cancer-related proteins. This is the first study to our knowledge, where unknown and novel proteins have been annotated in metastatic melanoma tumour tissue.


Assuntos
Melanoma/genética , Metástase Neoplásica/genética , Proteômica/métodos , Adulto , Biomarcadores Tumorais/genética , Feminino , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular/métodos , Anotação de Sequência Molecular/tendências , Prognóstico , Proteoma/genética , Proteoma/metabolismo , Neoplasias Cutâneas/genética , Melanoma Maligno Cutâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA