Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Cancer ; 2(10): 1055-1070, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-35121883

RESUMO

Stochastic transition of cancer cells between drug-sensitive and drug-tolerant persister phenotypes has been proposed to play a key role in non-genetic resistance to therapy. Yet, we show here that cancer cells actually possess a highly stable inherited chance to persist (CTP) during therapy. This CTP is non-stochastic, determined pre-treatment and has a unimodal distribution ranging from 0 to almost 100%. Notably, CTP is drug specific. We found that differential serine/threonine phosphorylation of the insulin receptor substrate 1 (IRS1) protein determines the CTP of lung and of head and neck cancer cells under epidermal growth factor receptor inhibition, both in vitro and in vivo. Indeed, the first-in-class IRS1 inhibitor NT219 was highly synergistic with anti-epidermal growth factor receptor therapy across multiple in vitro and in vivo models. Elucidation of drug-specific mechanisms that determine the degree and stability of cellular CTP may establish a framework for the elimination of cancer persisters, using new rationally designed drug combinations.


Assuntos
Receptores ErbB , Neoplasias , Receptores ErbB/genética , Proteínas Substratos do Receptor de Insulina/genética , Fosforilação , Probabilidade
2.
Sci Rep ; 10(1): 20030, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208761

RESUMO

Differentiation therapy has been recently revisited as a prospective approach in cancer therapy by targeting the aberrant growth, and repairing the differentiation and cell death programs of cancer cells. However, differentiation therapy of solid tumors is a challenging issue and progress in this field is limited. We performed High Throughput Screening (HTS) using a novel dual multiplex assay to discover compounds, which induce differentiation of human colon cancer cells. Here we show that the protein arginine methyl transferase (PRMT) type 1 inhibitor, MS023, is a potent inducer of colon cancer cell differentiation with a large therapeutic window. Differentiation changes in the highly aggressive human colon cancer cell line (HT-29) were proved by proteomic and genomic approaches. Growth of HT-29 xenograft in nude mice was significantly delayed upon MS023 treatment and immunohistochemistry of tumor indicated differentiation changes. These findings may lead to development of clinically effective anti-cancer drugs based on the mechanism of cancer cell differentiation.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Humanos , Camundongos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cell Stem Cell ; 24(2): 328-341.e9, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30554962

RESUMO

The epigenetic dynamics of induced pluripotent stem cell (iPSC) reprogramming in correctly reprogrammed cells at high resolution and throughout the entire process remain largely undefined. Here, we characterize conversion of mouse fibroblasts into iPSCs using Gatad2a-Mbd3/NuRD-depleted and highly efficient reprogramming systems. Unbiased high-resolution profiling of dynamic changes in levels of gene expression, chromatin engagement, DNA accessibility, and DNA methylation were obtained. We identified two distinct and synergistic transcriptional modules that dominate successful reprogramming, which are associated with cell identity and biosynthetic genes. The pluripotency module is governed by dynamic alterations in epigenetic modifications to promoters and binding by Oct4, Sox2, and Klf4, but not Myc. Early DNA demethylation at certain enhancers prospectively marks cells fated to reprogram. Myc activity drives expression of the essential biosynthetic module and is associated with optimized changes in tRNA codon usage. Our functional validations highlight interweaved epigenetic- and Myc-governed essential reconfigurations that rapidly commission and propel deterministic reprogramming toward naive pluripotency.


Assuntos
Reprogramação Celular/genética , Epigênese Genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Animais , Linhagem da Célula/genética , Cromatina/metabolismo , Desmetilação , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Ligação Proteica , RNA de Transferência/metabolismo , Fatores de Transcrição/metabolismo
4.
BMC Genomics ; 19(1): 419, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848287

RESUMO

BACKGROUND: The main bottleneck for genomic studies of tumors is the limited availability of fresh frozen (FF) samples collected from patients, coupled with comprehensive long-term clinical follow-up. This shortage could be alleviated by using existing large archives of routinely obtained and stored Formalin-Fixed Paraffin-Embedded (FFPE) tissues. However, since these samples are partially degraded, their RNA sequencing is technically challenging. RESULTS: In an effort to establish a reliable and practical procedure, we compared three protocols for RNA sequencing using pairs of FF and FFPE samples, both taken from the same breast tumor. In contrast to previous studies, we compared the expression profiles obtained from the two matched sample types, using the same protocol for both. Three protocols were tested on low initial amounts of RNA, as little as 100 ng, to represent the possibly limited availability of clinical samples. For two of the three protocols tested, poly(A) selection (mRNA-seq) and ribosomal-depletion, the total gene expression profiles of matched FF and FFPE pairs were highly correlated. For both protocols, differential gene expression between two FFPE samples was in agreement with their matched FF samples. Notably, although expression levels of FFPE samples by mRNA-seq were mainly represented by the 3'-end of the transcript, they yielded very similar results to those obtained by ribosomal-depletion protocol, which produces uniform coverage across the transcript. Further, focusing on clinically relevant genes, we showed that the high correlation between expression levels persists at higher resolutions. CONCLUSIONS: Using the poly(A) protocol for FFPE exhibited, unexpectedly, similar efficiency to the ribosomal-depletion protocol, with the latter requiring much higher (2-3 fold) sequencing depth to compensate for the relative low fraction of reads mapped to the transcriptome. The results indicate that standard poly(A)-based RNA sequencing of archived FFPE samples is a reliable and cost-effective alternative for measuring mRNA-seq on FF samples. Expression profiling of FFPE samples by mRNA-seq can facilitate much needed extensive retrospective clinical genomic studies.


Assuntos
Criopreservação , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Análise de Sequência de RNA , Fixação de Tecidos/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Humanos
5.
Brief Funct Genomics ; 17(1): 64-76, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968725

RESUMO

In recent years, there has been an effort to develop new technologies for measuring gene expression and sequence information from thousands of individual cells. Large data sets that were obtained using these 'single cell' technologies have allowed scientists to address fundamental questions in biomedicine ranging from stems cells and development to cancer and immunology. Here, we provide a brief review of recent developments in single-cell technology. Our intention is to provide a quick background for newcomers to the field as well as a deeper description of some of the leading technologies to date.


Assuntos
Análise de Célula Única/métodos , Transcriptoma/genética , Análise de Dados , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
6.
Nature ; 504(7479): 282-6, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24172903

RESUMO

Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3ß signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Animais , Blastocisto/citologia , Reprogramação Celular , Quimera/embriologia , Cromatina/metabolismo , Metilação de DNA , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Feminino , Camadas Germinativas/citologia , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Camundongos , Mórula/citologia , Organogênese , Regiões Promotoras Genéticas/genética , Medicina Regenerativa , Reprodutibilidade dos Testes , Transdução de Sinais , Inativação do Cromossomo X
7.
J Mol Diagn ; 14(5): 510-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22749746

RESUMO

For patients with primary lung cancer, accurate determination of the tumor type significantly influences treatment decisions. However, techniques and methods for lung cancer typing lack standardization. In particular, owing to limited tumor sample amounts and the poor quality of some samples, the classification of primary lung cancers using small preoperative biopsy specimens presents a diagnostic challenge using current tools. We previously described a microRNA-based assay (miRview squamous; Rosetta Genomics Ltd., Rehovot, Israel) that accurately differentiates between squamous and nonsquamous non-small cell lung cancer. Herein, we describe the development and validation of an assay that differentiates between the four main types of lung cancer: squamous cell carcinoma, nonsquamous non-small cell lung cancer, carcinoid, and small cell carcinoma. The assay, miRview lung (Rosetta Genomics Ltd.), is based on the expression levels of eight microRNAs, measured using a sensitive quantitative RT-PCR platform. It was validated on an independent set of 451 samples, more than half of which were preoperative cytologic samples (fine-needle aspiration and bronchial brushing and washing). The assay returned a result for more than 90% of the samples with overall accuracy of 94% (95% CI, 91% to 96%), with similar performance observed in pathologic and cytologic samples. Thus, miRview lung is a simple and reliable diagnostic assay that offers an accurate and standardized classification tool for primary lung cancer using pathologic and cytologic samples.


Assuntos
Neoplasias Pulmonares/classificação , Neoplasias Pulmonares/diagnóstico , MicroRNAs/genética , Técnicas de Diagnóstico Molecular/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Arch Virol ; 157(9): 1719-27, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22674341

RESUMO

MicroRNAs are key players in the regulation of gene expression by posttranscriptional suppression. They are involved in physiological processes, and thus their deregulation may contribute to the development of diseases and progression of cancer. Virus-encoded microRNAs and microRNAs of host origin play an important role in controlling the virus life cycle and immunity. The aim of this study was to determine the effect of vaccinia virus (VACV) infection on the expression of host-encoded microRNAs. A marked general suppression of most microRNAs in the infected cells was observed within 24 hours after VACV infection of a number of cell types. We demonstrate that this suppression was associated with abrogation of expression of the Dicer1 enzyme, which is a key enzyme in the generation of microRNAs.


Assuntos
Interações Hospedeiro-Patógeno , MicroRNAs/antagonistas & inibidores , Vaccinia virus/patogenicidade , RNA Helicases DEAD-box/antagonistas & inibidores , Células HeLa , Humanos , Ribonuclease III/antagonistas & inibidores , Vaccinia virus/crescimento & desenvolvimento
9.
Mod Pathol ; 23(6): 814-23, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20348879

RESUMO

Identification of the tissue of origin of a tumor is vital to its management. Previous studies showed tissue-specific expression patterns of microRNA and suggested that microRNA profiling would be useful in addressing this diagnostic challenge. MicroRNAs are well preserved in formalin-fixed, paraffin-embedded (FFPE) samples, further supporting this approach. To develop a standardized assay for identification of the tissue origin of FFPE tumor samples, we used microarray data from 504 tumor samples to select a shortlist of 104 microRNA biomarker candidates. These 104 microRNAs were profiled by proprietary quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) on 356 FFPE tumor samples. A total of 48 microRNAs were chosen from this list of candidates and used to train a classifier. We developed a clinical test for the identification of the tumor tissue of origin based on a standardized protocol and defined the classification criteria. The test measures expression levels of 48 microRNAs by qRT-PCR, and predicts the tissue of origin among 25 possible classes, corresponding to 17 distinct tissues and organs. The biologically motivated classifier combines the predictions generated by a binary decision tree and K-nearest neighbors (KNN). The classifier was validated on an independent, blinded set of 204 FFPE tumor samples, including nearly 100 metastatic tumor samples. The test predictions correctly identified the reference diagnosis in 85% of the cases. In 66% of the cases the two algorithm predictions (tree and KNN) agreed on a single-tissue origin, which was identical to the reference diagnosis in 90% of cases. Thus, a qRT-PCR test based on the expression profile of 48 tissue-specific microRNAs allows accurate identification of the tumor tissue of origin.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Testes Genéticos/métodos , MicroRNAs/análise , Neoplasias Primárias Desconhecidas/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Algoritmos , Árvores de Decisões , Alemanha , Humanos , Israel , Neoplasias Primárias Desconhecidas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
10.
J Clin Oncol ; 27(12): 2030-7, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19273703

RESUMO

PURPOSE: Recent advances in treatment of lung cancer require greater accuracy in the subclassification of non-small-cell lung cancer (NSCLC). Targeted therapies which inhibit tumor angiogenesis pose higher risk for adverse response in cases of squamous cell carcinoma. Interobserver variability and the lack of specific, standardized assays limit the current abilities to adequately stratify patients for such treatments. In this study, we set out to identify specific microRNA biomarkers for the identification of squamous cell carcinoma, and to use such markers for the development of a standardized assay. PATIENTS AND METHODS: High-throughput microarray was used to measure microRNA expression levels in 122 adenocarcinoma and squamous NSCLC samples. A quantitative real-time polymerase chain reaction (qRT-PCR) platform was used to verify findings in an independent set of 20 NSCLC formalin-fixed, paraffin-embedded (FFPE) samples, and to develop a diagnostic assay using an additional set of 27 NSCLC FFPE samples. The assay was validated using an independent blinded cohort consisting of 79 NSCLC FFPE samples. RESULTS: We identified hsa-miR-205 as a highly specific marker for squamous cell lung carcinoma. A microRNA-based qRT-PCR assay that measures expression of hsa-miR-205 reached sensitivity of 96% and specificity of 90% in the identification of squamous cell lung carcinomas in an independent blinded validation set. CONCLUSION: Hsa-miR-205 is a highly accurate marker for lung cancer of squamous histology. The standardized diagnostic assay presented here can provide highly accurate subclassification of NSCLC patients.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Bioensaio , Carcinoma de Células Grandes/diagnóstico , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/secundário , Carcinoma Pulmonar de Células não Pequenas/secundário , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/secundário , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Brain Pathol ; 19(3): 375-83, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18624795

RESUMO

A recurring challenge for brain pathologists is to diagnose whether a brain malignancy is a primary tumor or a metastasis from some other tissue. The accurate diagnosis of brain malignancies is essential for selection of proper treatment. MicroRNAs are a class of small non-coding RNA species that regulate gene expression; many exhibit tissue-specific expression and are misregulated in cancer. Using microRNA expression profiling, we found that hsa-miR-92b and hsa-miR-9/hsa-miR-9* are over-expressed, specifically in brain primary tumors, as compared to primary tumors from other tissues and their metastases to the brain. By considering the expression of only these two microRNAs, it is possible to distinguish between primary and metastatic brain tumors with very high accuracy. These microRNAs thus represent excellent biomarkers for brain primary tumors. Previous reports have found that hsa-miR-92b and hsa-miR-9/hsa-miR-9* are expressed more strongly in developing neurons and brain than in adult brain. Thus, their specific over-expression in brain primary tumors supports a functional role for these microRNAs or a link between neuronal stem cells and brain tumorigenesis.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , MicroRNAs/genética , Metástase Neoplásica/diagnóstico , Adulto , Área Sob a Curva , Diagnóstico Diferencial , Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Curva ROC , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
12.
PLoS One ; 3(9): e3148, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18773077

RESUMO

BACKGROUND: Circulating nucleic acids (CNAs) offer unique opportunities for early diagnosis of clinical conditions. Here we show that microRNAs, a family of small non-coding regulatory RNAs involved in human development and pathology, are present in bodily fluids and represent new effective biomarkers. METHODS AND RESULTS: After developing protocols for extracting and quantifying microRNAs in serum and other body fluids, the serum microRNA profiles of several healthy individuals were determined and found to be similar, validating the robustness of our methods. To address the possibility that the abundance of specific microRNAs might change during physiological or pathological conditions, serum microRNA levels in pregnant and non pregnant women were compared. In sera from pregnant women, microRNAs associated with human placenta were significantly elevated and their levels correlated with pregnancy stage. CONCLUSIONS AND SIGNIFICANCE: Considering the central role of microRNAs in development and disease, our results highlight the medically relevant potential of determining microRNA levels in serum and other body fluids. Thus, microRNAs are a new class of CNAs that promise to serve as useful clinical biomarkers.


Assuntos
Biomarcadores/metabolismo , MicroRNAs/genética , Biomarcadores Tumorais , Sistema Livre de Células , DNA/sangue , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/fisiologia , Gravidez , Trimestres da Gravidez , RNA/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
13.
Nat Biotechnol ; 26(4): 462-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18362881

RESUMO

MicroRNAs (miRNAs) belong to a class of noncoding, regulatory RNAs that is involved in oncogenesis and shows remarkable tissue specificity. Their potential for tumor classification suggests they may be used in identifying the tissue in which cancers of unknown primary origin arose, a major clinical problem. We measured miRNA expression levels in 400 paraffin-embedded and fresh-frozen samples from 22 different tumor tissues and metastases. We used miRNA microarray data of 253 samples to construct a transparent classifier based on 48 miRNAs. Two-thirds of samples were classified with high confidence, with accuracy >90%. In an independent blinded test-set of 83 samples, overall high-confidence accuracy reached 89%. Classification accuracy reached 100% for most tissue classes, including 131 metastatic samples. We further validated the utility of the miRNA biomarkers by quantitative RT-PCR using 65 additional blinded test samples. Our findings demonstrate the effectiveness of miRNAs as biomarkers for tracing the tissue of origin of cancers of unknown primary origin.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sequência de Bases , Biomarcadores Tumorais/análise , Humanos , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Células Tumorais Cultivadas
14.
Cancer Epidemiol Biomarkers Prev ; 12(8): 733-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12917204

RESUMO

Deficiencies in tasks of detecting and repairing DNA damage lead to mutations and chromosomal abnormalities, a hallmark of cancer. The gene mutated in ataxia-telangiectasia (A-T), ATM, is a proximal component in performing such tasks. Studies of A-T families have suggested an increased risk of breast cancer among obligate female heterozygous carriers of ATM mutations. Paradoxically, studies of sporadic and familial breast cancer have failed to demonstrate an elevated prevalence of mutations among breast cancer cases. We characterized the prevalence and distribution of 20 ATM missense mutations/polymorphisms in a population-based case-control study of 854 African-American, Latina, Japanese, and Caucasian women aged >/==" BORDER="0">45 years participating in the Multiethnic Cohort Study. The study population included 428 incident breast cancer cases and 426 controls. The prevalence of variants ranged from 0% to 13.6% among controls and varied by ethnicity (0-32.5%). Overall, these data provide little support for an association of ATM missense mutations with breast cancer among older women. We observed only one sequence variation (L546V), common among African-American women, to be overrepresented among all high-stage breast cancer cases (odds ratio, 3.35; 95% confidence interval, 1.27-8.84). After correction for multiple comparisons, this observed risk modification did not attain statistical significance. The distribution of ATM missense mutations and polymorphisms varied widely across the four ethnic groups studied. Although a single missense variant (L546V) appeared to act as a modest predictor of risk, the remaining variants were no more common in breast cancer cases as compared with controls.


Assuntos
Neoplasias da Mama/genética , Etnicidade , Mutação de Sentido Incorreto/genética , Proteínas Serina-Treonina Quinases/genética , Negro ou Afro-Americano/genética , Idoso , Asiático/genética , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Estudos de Coortes , Proteínas de Ligação a DNA , Feminino , Variação Genética , Hispânico ou Latino/genética , Humanos , Japão , Pessoa de Meia-Idade , Polimorfismo Genético , Proteínas Supressoras de Tumor , População Branca/genética
15.
Clin Cancer Res ; 8(12): 3813-9, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12473594

RESUMO

PURPOSE: In this study, we first sought to evaluate whether individuals heterozygous for ATM mutations may have an increased susceptibility to radiation-induced breast cancer (BC) after treatment for Hodgkin's disease (HD). We next sought to determine the frequency of ATM variants in patients with Hodgkin's lymphoma, regardless of coexisting BC, compared with healthy volunteers. EXPERIMENTAL DESIGN: Full sequence analysis of ATM was performed on cDNA from peripheral blood lymphocytes from 37 cases of BC after therapeutic radiation therapy for HD and 27 comparison cases with HD and no BC treated during the same time period. The frequency of ATM variants was analyzed in the total group of 64 cases of HD and compared to allele frequencies in 128 ethnically matched controls from the same geographical region. RESULTS: No protein-truncating ATM mutations were observed in cases with HD with or without BC. Missense mutations were more frequent in the cohort with HD compared with patients with BC following HD (P = 0.02). The median time from HD to the development of BC was 18 years in patients with ATM variants compared with 16 years in those with no ATM variants (P = 0.04). Multiple ATM variants, including one homozygous mutation, were observed in 9 HD cases. CONCLUSIONS: Heterozygous protein-truncating or missense mutations of ATM were not associated with increased radiation-associated risk of BC after HD. The observation of multiple germ-line mutations and a homozygote suggests that rare ATM variants may constitute cancer-susceptibility alleles in a subset of cases.


Assuntos
Neoplasias da Mama/etiologia , Frequência do Gene/genética , Doença de Hodgkin/radioterapia , Neoplasias Induzidas por Radiação/etiologia , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Idoso , Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias da Mama/genética , Estudos de Casos e Controles , Proteínas de Ciclo Celular , Células Cultivadas , Criança , Estudos de Coortes , DNA Complementar/análise , Proteínas de Ligação a DNA , Éxons/genética , Feminino , Humanos , Linfócitos/sangue , Linfócitos/metabolismo , Masculino , Mutação , Neoplasias Induzidas por Radiação/genética , RNA Neoplásico/sangue , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA