Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 711291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712208

RESUMO

Lyme borreliosis is a multisystemic disease caused by the pleomorphic bacteria of the Borrelia burgdorferi sensu lato complex. The exact mechanisms for the infection to progress into a prolonged sequelae of the disease are currently unknown, although immune evasion and persistence of the bacteria in the host are thought to be major contributors. The current study investigated B. burgdorferi infection processes in two human cell lines, both non-immune and non-phagocytic, to further understand the mechanisms of infection of this bacterium. By utilizing light, confocal, helium ion, and transmission electron microscopy, borrelial infection of chondrosarcoma (SW1353) and dermal fibroblast (BJ) cells were examined from an early 30-min time point to a late 9-days post-infection. Host cell invasion, viability of both the host and B. burgdorferi, as well as, co-localization with lysosomes and the presence of different borrelial pleomorphic forms were analyzed. The results demonstrated differences of infection between the cell lines starting from early entry as B. burgdorferi invaded BJ cells in coiled forms with less pronounced host cell extensions, whereas in SW1353 cells, micropodial interactions with spirochetes were always seen. Moreover, infection of BJ cells increased in a dose dependent manner throughout the examined 9 days, while the percentage of infection, although dose dependent, decreased in SW1353 cells after reaching a peak at 48 h. Furthermore, blebs, round body and damaged B. burgdorferi forms, were mostly observed from the infected SW1353 cells, while spirochetes dominated in BJ cells. Both infected host cell lines grew and remained viable after 9 day post-infection. Although damaged forms were noticed in both cell lines, co-localization with lysosomes was low in both cell lines, especially in BJ cells. The invasion of non-phagocytic cells and the lack of cytopathic effects onto the host cells by B. burgdorferi indicated one mechanism of immune evasion for the bacteria. The differences in attachment, pleomorphic form expressions, and the lack of lysosomal involvement between the infected host cells likely explain the ability of a bacterium to adapt to different environments, as well as, a strategy for persistence inside a host.

2.
Microbes Infect ; 18(7-8): 484-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27139815

RESUMO

Borrelia burgdorferi is the causative agent of tick-borne Lyme disease. As a response to environmental stress B. burgdorferi can change its morphology to a round body form. The role of B. burgdorferi pleomorphic forms in Lyme disease pathogenesis has long been debated and unclear. Here, we demonstrated that round bodies were processed differently in differentiated macrophages, consequently inducing distinct immune responses compared to spirochetes in vitro. Colocalization analysis indicated that the F-actin participates in internalization of both forms. However, round bodies end up less in macrophage lysosomes than spirochetes suggesting that there are differences in processing of these forms in phagocytic cells. Furthermore, round bodies stimulated distinct cytokine and chemokine production in these cells. We confirmed that spirochetes and round bodies present different protein profiles and antigenicity. In a Western blot analysis Lyme disease patients had more intense responses to round bodies when compared to spirochetes. These results suggest that round bodies have a role in Lyme disease pathogenesis.


Assuntos
Borrelia burgdorferi/citologia , Borrelia burgdorferi/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Actinas/metabolismo , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Western Blotting , Borrelia burgdorferi/química , Citocinas/biossíntese , Endocitose , Humanos , Lisossomos/microbiologia , Proteoma/análise
3.
PLoS One ; 8(6): e67179, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776709

RESUMO

Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens.


Assuntos
Apoptose/imunologia , Autoantígenos/metabolismo , Autoimunidade/imunologia , Tolerância Imunológica/imunologia , Infecções por Parvoviridae/imunologia , Parvovirus B19 Humano/imunologia , Proteínas não Estruturais Virais/metabolismo , Animais , Células Apresentadoras de Antígenos/metabolismo , Citometria de Fluxo , Células Hep G2 , Humanos , Microscopia Eletrônica de Varredura , Fagocitose/fisiologia , Células Sf9 , Spodoptera
4.
Int J Biol Sci ; 8(1): 79-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22211107

RESUMO

The non-structural proteins (NS) of the parvovirus family are highly conserved multi-functional molecules that have been extensively characterized and shown to be integral to viral replication. Along with NTP-dependent helicase activity, these proteins carry within their sequences domains that allow them to bind DNA and act as nucleases in order to resolve the concatameric intermediates developed during viral replication. The parvovirus B19 NS1 protein contains sequence domains highly similar to those previously implicated in the above-described functions of NS proteins from adeno-associated virus (AAV), minute virus of mice (MVM) and other non-human parvoviruses. Previous studies have shown that transient transfection of B19 NS1 into human liver carcinoma (HepG2) cells initiates the intrinsic apoptotic cascade, ultimately resulting in cell death. In an effort to elucidate the mechanism of mammalian cell demise in the presence of B19 NS1, we undertook a mutagenesis analysis of the protein's endonuclease domain. Our studies have shown that, unlike wild-type NS1, which induces an accumulation of DNA damage, S phase arrest and apoptosis in HepG2 cells, disruptions in the metal coordination motif of the B19 NS1 protein reduce its ability to induce DNA damage and to trigger S phase arrest and subsequent apoptosis. These studies support our hypothesis that, in the absence of replicating B19 genomes, NS1-induced host cell DNA damage is responsible for apoptotic cell death observed in parvoviral infection of non-permissive mammalian cells.


Assuntos
Dano ao DNA , Endonucleases/química , Parvovirus B19 Humano/fisiologia , Pontos de Checagem da Fase S do Ciclo Celular , Proteínas não Estruturais Virais/química , Motivos de Aminoácidos , Animais , Apoptose , Análise Mutacional de DNA , Endonucleases/fisiologia , Células Hep G2 , Humanos , Mutagênese Sítio-Dirigida , Spodoptera , Proteínas não Estruturais Virais/análise , Proteínas não Estruturais Virais/fisiologia , Replicação Viral
5.
Int J Nanomedicine ; 5: 417-28, 2010 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-20957163

RESUMO

Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV) to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK) cells and canine fibroma cells (A72) displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI) labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments.


Assuntos
Morte Celular , Terapia Viral Oncolítica/métodos , Parvovirus Canino/fisiologia , Animais , Apoptose , Caspases/metabolismo , Gatos , Ciclo Celular , Linhagem Celular , Dano ao DNA , Fragmentação do DNA , Cães , Citometria de Fluxo , Expressão Gênica , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanomedicina , Necrose , Terapia Viral Oncolítica/tendências , Parvovirus Canino/genética , Proteínas não Estruturais Virais/genética
6.
Int J Med Sci ; 7(3): 110-9, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20567611

RESUMO

A clinical association between idiopathic liver disease and parvovirus B19 infection has been observed. Fulminant liver failure, not associated with other liver-tropic viruses, has been attributed to B19 in numerous reports, suggesting a possible role for B19 components in the extensive hepatocyte cytotoxicity observed in this condition. A recent report by Abe and colleagues (Int J Med Sci. 2007;4:105-9) demonstrated a link between persistent parvovirus B19 genotype I and III infection and fulminant liver failure. The genetic analysis of isolates obtained from these patients demonstrated a conservation of key amino acids in the nonstructural protein 1 (NS1) of the disease-associated genotypes. In this report we examine a conserved residue identified by Abe and colleagues and show that substitution of isoleucine 181 for methionine, as occurs in B19 genotype II, results in the reduction of B19 NS1-induced cytotoxicity of liver cells. Our results support the hypothesis that in the setting of persistent B19 infection, direct B19 NS1-induced cytotoxicity may play a role in idiopathic fulminant liver failure.


Assuntos
Apoptose/efeitos dos fármacos , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/toxicidade , Substituição de Aminoácidos , Citometria de Fluxo , Genótipo , Células Hep G2 , Humanos , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química
7.
J Virol ; 79(24): 15452-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16306616

RESUMO

Autographa californica multiple nucleopolyhedrovirus (AcMNPV), a prototype member of the Baculoviridae family, has gained increasing interest as a potential vector candidate for mammalian gene delivery applications. AcMNPV is known to enter both dividing and nondividing mammalian cell lines in vitro, but the mode and kinetics of entry as well as the intracellular transport of the virus in mammalian cells is poorly understood. The general objective of this study was to characterize the entry steps of AcMNPV- and green fluorescent protein-displaying recombinant baculoviruses in human hepatoma cells. The viruses were found to bind and transduce the cell line efficiently, and electron microscopy studies revealed that virions were located on the cell surface in pits with an electron-dense coating resembling clathrin. In addition, virus particles were found in larger noncoated plasma membrane invaginations and in intracellular vesicles resembling macropinosomes. In double-labeling experiments, virus particles were detected by confocal microscopy in early endosomes at 30 min and in late endosomes starting at 45 min posttransduction. Viruses were also seen in structures specific for early endosomal as well as late endosomal/lysosomal markers by nanogold preembedding immunoelectron microscopy. No indication of viral entry into recycling endosomes or the Golgi complex was observed by confocal microscopy. In conclusion, these results suggest that AcMNPV enters mammalian cells via clathrin-mediated endocytosis and possibly via macropinocytosis. Thus, the data presented here should enable future design of baculovirus vectors suitable for more specific and enhanced delivery of genetic material into mammalian cells.


Assuntos
Hepatócitos/virologia , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/fisiologia , Spodoptera/virologia , Vírion/fisiologia , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular , Endossomos/virologia , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/citologia , Humanos , Replicação Viral
8.
Biochem Biophys Res Commun ; 331(2): 527-35, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15850791

RESUMO

Although sharing a T=1 icosahedral symmetry with other members of the Parvoviridae family, it has been suggested that the fivefold channel of the human parvovirus B19 VP2 capsids is closed at its outside end. To investigate the possibility of placing a relatively large protein moiety at this site of B19, fluorescent virus-like particles (fVLPs) of B19 were developed. The enhanced green fluorescent protein (EGFP) was inserted at the N-terminus of the structural protein VP2 and assembly of fVLPs from this fusion protein was obtained. Electron microscopy revealed that these fluorescent protein complexes were very similar in size when compared to wild-type B19 virus. Further, fluorescence correlation spectroscopy showed that an average of nine EGFP domains were associated with these virus-like structures. Atomic force microscopy and immunoprecipitation studies showed that EGFP was displayed on the surface of these fVLPs. Confocal imaging indicated that these chimeric complexes were targeted to late endosomes when expressed in insect cells. The fVLPs were able to efficiently enter cancer cells and traffic to the nucleus via the microtubulus network. Finally, immunoglobulins present in human parvovirus B19 acute and past-immunity serum samples were able to detect antigenic epitopes present in these fVLPs. In summary, we have developed fluorescent virus-like nanoparticles displaying a large heterologous entity that should be of help to elucidate the mechanisms of infection and pathogenesis of human parvovirus B19. In addition, these B19 nanoparticles serve as a model in the development of targetable vehicles designed for delivery of biomolecules.


Assuntos
Proteínas do Capsídeo/metabolismo , Parvovirus B19 Humano/química , Vírion/química , Montagem de Vírus , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/ultraestrutura , Linhagem Celular , Linhagem Celular Tumoral , Endossomos/metabolismo , Endossomos/virologia , Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/ultraestrutura , Humanos , Soros Imunes/imunologia , Imunoprecipitação , Microscopia de Força Atômica , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanoestruturas/virologia , Infecções por Parvoviridae/imunologia , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/metabolismo , Parvovirus B19 Humano/ultraestrutura , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/ultraestrutura , Spodoptera , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA