Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(4): e1008496, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32320442

RESUMO

Human herpesviruses 6A and 6B (HHV-6A/B) are unique among human herpesviruses in their ability to integrate their genome into host chromosomes. Viral integration occurs at the ends of chromosomes within the host telomeres. The ends of the HHV-6A/B genomes contain telomeric repeats that facilitate the integration process. Here, we report that productive infections are associated with a massive increase in telomeric sequences of viral origin. The majority of the viral telomeric signals can be detected within viral replication compartments (VRC) that contain the viral DNA processivity factor p41 and the viral immediate-early 2 (IE2) protein. Components of the shelterin protein complex present at telomeres, including TRF1 and TRF2 are also recruited to VRC during infection. Biochemical, immunofluorescence coupled with in situ hybridization and chromatin immunoprecipitation demonstrated the binding of TRF2 to the HHV-6A/B telomeric repeats. In addition, approximately 60% of the viral IE2 protein localize at cellular telomeres during infection. Transient knockdown of TRF2 resulted in greatly reduced (13%) localization of IE2 at cellular telomeres (p<0.0001). Lastly, TRF2 knockdown reduced HHV-6A/B integration frequency (p<0.05), while no effect was observed on the infection efficiency. Overall, our study identified that HHV-6A/B IE2 localizes to telomeres during infection and highlight the role of TRF2 in HHV-6A/B infection and chromosomal integration.


Assuntos
Herpesvirus Humano 6/genética , Herpesvirus Humano 6/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Integração Viral/genética , Linhagem Celular Tumoral , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Infecções por Roseolovirus/genética , Infecções por Roseolovirus/metabolismo , Infecções por Roseolovirus/virologia , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
2.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468878

RESUMO

Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39, U90, and U100, without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state.IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the present study, we describe two quantitative cell culture viral integration systems. These systems can be used to define cellular and viral factors that play a role in HHV-6A/B integration. Furthermore, these systems will allow us to decipher the conditions resulting in virus gene expression and excision of the integrated viral genome resulting in reactivation.


Assuntos
Herpesvirus Humano 6/fisiologia , Cultura de Vírus/métodos , Integração Viral , Técnicas de Cultura de Células/métodos , Linhagem Celular , Humanos , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase em Tempo Real
3.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468887

RESUMO

Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex-specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on the HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. We next investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A's ability to integrate its genome into host chromosomes. Incubation of telomerase-expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency (P < 0.002); in contrast, BRACO-19 had no effect on HHV-6 integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affects the generation of cellular clones containing integrated HHV-6A.IMPORTANCE HHV-6A/B can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of various lengths (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure, referred to as a G-quadruplex. In the current study, we have examined the effects of a G-quadruplex binding and stabilizing agent, BRACO-19, on HHV-6A chromosomal integration. By stabilizing G-quadruplex structures, BRACO-19 affects the ability of the telomerase complex to elongate telomeres. Our results indicate that BRACO-19 reduces the number of clones harboring integrated HHV-6A. This study is the first of its kind and suggests that telomerase activity is essential to restore a functional telomere of adequate length following HHV-6A integration.


Assuntos
Quadruplex G , Herpesvirus Humano 6/fisiologia , Conformação de Ácido Nucleico , Telômero/química , Telômero/metabolismo , Integração Viral , Acridinas/metabolismo , Linhagem Celular , Dicroísmo Circular , Humanos
4.
Nucleic Acids Res ; 43(12): 6084-98, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25999342

RESUMO

Human herpesvirus-6A (HHV-6A) and HHV-6B integrate their genomes into the telomeres of human chromosomes, however, the mechanisms leading to integration remain unknown. HHV-6A/B encode a protein that has been proposed to be involved in integration termed U94, an ortholog of adeno-associated virus type 2 (AAV-2) Rep68 integrase. In this report, we addressed whether purified recombinant maltose-binding protein (MBP)-U94 fusion proteins of HHV-6A/B possess biological functions compatible with viral integration. We could demonstrate that MBP-U94 efficiently binds both dsDNA and ssDNA containing telomeric repeats using gel shift assay and surface plasmon resonance. MBP-U94 is also able to hydrolyze adenosine triphosphate (ATP) to ADP, providing the energy for further catalytic activities. In addition, U94 displays a 3' to 5' exonuclease activity on dsDNA with a preference for 3'-recessed ends. Once the DNA strand reaches 8-10 nt in length, the enzyme dissociates it from the complementary strand. Lastly, MBP-U94 compromises the integrity of a synthetic telomeric D-loop through exonuclease attack at the 3' end of the invading strand. The preferential DNA binding of MBP-U94 to telomeric sequences, its ability to hydrolyze ATP and its exonuclease/helicase activities suggest that U94 possesses all functions required for HHV-6A/B chromosomal integration.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Exodesoxirribonucleases/metabolismo , Herpesvirus Humano 6/enzimologia , Proteínas Virais/metabolismo , Adenosina Trifosfatases/química , DNA Helicases/química , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/química , Ligação Proteica , Alinhamento de Sequência , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA