Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(4): 693-709, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457118

RESUMO

Psoralens are eponymous for PUVA (psoralen plus UV-A radiation) therapy, which inter alia can be used to treat various skin diseases. Based on the same underlying mechanism of action, the synthetic psoralen amotosalen (AMO) is utilized in the pathogen reduction technology of the INTERCEPT® Blood System to inactivate pathogens in plasma and platelet components. The photophysical behavior of AMO in the absence of DNA is remarkably similar to that of the recently studied psoralen 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT). By means of steady-state and time-resolved spectroscopy, intercalation and photochemistry of AMO and synthetic DNA were studied. AMO intercalates with a higher affinity into A,T-only DNA (KD = 8.9 × 10-5 M) than into G,C-only DNA (KD = 6.9 × 10-4 M). AMO covalently photobinds to A,T-only DNA with a reaction quantum yield of ΦR = 0.11. Like AMT, it does not photoreact following intercalation into G,C-only DNA. Femto- and nanosecond transient absorption spectroscopy reveals the characteristic pattern of photobinding to A,T-only DNA. For AMO and G,C-only DNA, signatures of a photoinduced electron transfer are recorded.


Assuntos
Ficusina , Furocumarinas , Ficusina/farmacologia , Ficusina/química , Furocumarinas/farmacologia , Furocumarinas/química , DNA/química , Análise Espectral
2.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182821

RESUMO

The psoralens 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP) and 5-methoxypsoralen (5-MOP) find clinical application in PUVA (psoralen + UVA) therapy. PUVA treats skin diseases like psoriasis and atopic eczema. Psoralens target the DNA of cells. Upon photo-excitation psoralens bind to the DNA base thymine. This photo-binding was studied using steady-state UV/Vis and IR spectroscopy as well as nanosecond transient UV/Vis absorption. The experiments show that the photo-addition of 8-MOP and TMP involve the psoralen triplet state and a biradical intermediate. 5-MOP forms a structurally different photo-product. Its formation could not be traced by the present spectroscopic technique.


Assuntos
DNA/química , Furocumarinas/química , Metoxaleno/química , Fotoquímica/métodos , Trioxsaleno/química , Dano ao DNA , Humanos , Cinética , Preparações Farmacêuticas , Teoria Quântica , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Raios Ultravioleta
3.
Chemphyschem ; 17(9): 1377-86, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-26607751

RESUMO

Psoralens are heterocyclic compounds which are, among other uses, used to treat skin deseases in the framework of PUVA therapy. In the dark, they intercalate into DNA and can form photoadducts with thymines upon UV-A excitation, which harms the affected cells. We have recently discovered that after excitation of intercalated psoralens, an efficient photoinduced electron transfer (PET) from DNA occurs. Here, the PET is studied in detail by means of femtosecond transient absorption spectroscopy. Using DNA samples that contain either only GC or AT base pairs, we show that only guanine donates the electrons. Additionally, the substituent effects on PET are studied relying on three different psoralen derivatives. The substitution alters spectroscopic and electrochemical properties of the psoralens, which are determined by cyclic voltammetry and steady state spectroscopy. These experiments allow us to estimate the PET energetics, which are in line with the measured kinetics. Implications for the applications of psoralens are discussed.


Assuntos
DNA/química , Furocumarinas/química , Pareamento de Bases , Eletroquímica , Transporte de Elétrons , Fotoquímica , Espectrometria de Fluorescência , Raios Ultravioleta
4.
Proc Natl Acad Sci U S A ; 104(7): 2163-8, 2007 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-17284588

RESUMO

Intrachain loop formation allows unfolded polypeptide chains to search for favorable interactions during protein folding. We applied triplet-triplet energy transfer between a xanthone moiety and naphthylalanine to directly measure loop formation in various unfolded polypeptide chains with loop regions consisting of polyserine, poly(glycine-serine) or polyproline. By combination of femtosecond and nanosecond laserflash experiments loop formation could be studied over many orders of magnitude in time from picoseconds to microseconds. The results reveal processes on different time scales indicating motions on different hierarchical levels of the free energy surface. A minor (<15%) very fast reaction with a time constant of approximately 3 ps indicates equilibrium conformations with donor and acceptor in contact at the time of the laserflash. Complex kinetics of loop formation were observed on the 50- to 500-ps time scale, which indicate motions within a local well on the energy landscape. Conformations within this well can form loops by undergoing local motions without having to cross major barriers. Exponential kinetics observed on the 10- to 100-ns time scale are caused by diffusional processes involving large-scale motions that allow the polypeptide chain to explore the complete conformational space. These results indicate that the free energy landscape for unfolded polypeptide chains and native proteins have similar properties. The presence of local energy minima reduces the conformational space and accelerates the conformational search for energetically favorable local intrachain contacts.


Assuntos
Transferência de Energia , Modelos Moleculares , Peptídeos/química , Dobramento de Proteína , Alanina/análogos & derivados , Alanina/química , Difusão , Cinética , Movimento (Física) , Estrutura Secundária de Proteína , Fatores de Tempo , Xantonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA