Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Imaging ; 12(4): 263-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23651504

RESUMO

Two novel bifunctional chelates, 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (PCTA) and 1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid (Oxo-DO3A), were found to radiolabel antibodies with copper 64 (64Cu) well for positron emission tomography (PET). In this study, the same chelators were used to radiolabel peptides with 64Cu for PET imaging of angiogenesis. PCTA, Oxo-DO3A, and 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) were conjugated to cyclic-(RGDyK), and their binding affinities were confirmed. Conditions for 64Cu radiolabeling were optimized for maximum yield and specific activity. The in vitro stability of the radiolabeled compounds was challenged with serum incubation. PET studies were carried out in a non-αvß3-expressing tumor model to evaluate the compounds' specificity for proliferating tumor vasculature and their in vivo pharmacokinetics. The PCTA and Oxo-DO3A bioconjugates were labeled with 64Cu at higher effective specific activity and radiochemical yield than the DOTA bioconjugate. In the imaging studies, all the 64Cu bioconjugates could be used to visualize the tumor and the radiotracer uptake was blocked with cyclic-(RGDyK). Target uptake of each bioconjugate was similar, but differences in other tissues were observed. 64Cu-PCTA-RGD showed the best clearance from nontarget tissue and the highest tumor to nontarget ratios. PCTA was the most promising bifunctional chelate for 64Cu peptide imaging and warrants further investigation.


Assuntos
Radioisótopos de Cobre , Oligopeptídeos , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral , Clorobenzenos/química , Cromatografia Líquida de Alta Pressão , Células HT29 , Compostos Heterocíclicos com 1 Anel/química , Humanos , Oligopeptídeos/química
2.
Bioconjug Chem ; 23(11): 2239-46, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23035991

RESUMO

In this study, a bifunctional version of the chelate PCTA was compared to the analogous NOTA derivative for peptide conjugation, (68)Ga radiolabeling, and small peptide imaging. Both p-SCN-Bn-PCTA and p-SCN-Bn-NOTA were conjugated to cyclo-RGDyK. The resulting conjugates, PCTA-RGD and NOTA-RGD, retained their affinity for the peptide target, the α(v)ß(3) receptor. Both PCTA-RGD and NOTA-RGD could be radiolabeled with (68)Ga in >95% radiochemical yield (RCY) at room temperature within 5 min. For PCTA-RGD, higher effective specific activities, up to 55 MBq/nmol, could be achieved in 95% RCY with gentle heating at 40 °C. The (68)Ga-radiolabeled conjugates were >90% stable in serum and in the presence of excess apo-transferrin over 4 h; (68)Ga-PCTA-RGD did have slightly lower stability than (68)Ga-NOTA-RGD, 93 ± 2% compared to 98 ± 1%, at the 4 h time point. Finally, the tumor and nontarget organ uptake and clearance of (68)Ga-radiolabeled PCTA-RGD and NOTA-RGD was compared in mice bearing HT-29 colorectal tumor xenografts. Activity cleared quickly from the blood and muscle tissue with >90% and >70% of the initial activity cleared within the first 40 min, respectively. The majority of activity was observed in the kidney, liver, and tumor tissue. The observed tumor uptake was specific with up to 75% of the tumor uptake blocked when the mice were preinjected with 160 nmol (100 µg) of unlabeled peptide. Uptake observed in the blocked tumors was not significantly different than the background activity observed in muscle tissue. The only significant difference between the two (68)Ga-radiolabeled bioconjugates in vivo was the kidney uptake. (68)Ga-radiolabeled PCTA-RGD had significantly lower (p < 0.05) kidney uptake (1.1 ± 0.5%) at 2 h postinjection compared to (68)Ga-radiolabeled NOTA-RGD (2.7 ± 1.3%). Overall, (68)Ga-radiolabeled PCTA-RGD and NOTA-RGD performed similarly, but the lower kidney uptake for (68)Ga-radiolabeled PCTA-RGD may be advantageous in some imaging applications.


Assuntos
Clorobenzenos , Compostos Heterocíclicos , Imagem Molecular/métodos , Oligopeptídeos , Animais , Linhagem Celular Tumoral , Clorobenzenos/química , Clorobenzenos/farmacocinética , Radioisótopos de Gálio , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacocinética , Compostos Heterocíclicos com 1 Anel , Humanos , Camundongos , Estrutura Molecular , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
3.
Nucl Med Biol ; 39(6): 785-94, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22381779

RESUMO

INTRODUCTION: The rekindled interest in the (68)Ga generator as an attractive positron emission tomography generator system has led us and others to investigate novel chelate systems for (68)Ga. We have previously reported our findings with the acyclic, rapidly coordinating chelate H(2)dedpa and its model derivatives. METHODS: In this report, we describe the synthesis of the corresponding bifunctional chelate scaffolds (H(2)dp-bb-NCS and H(2)dp-N-NCS) as well as the radiolabeling properties, transferrin stability, binding to the target using in vitro cell models and in vivo behavior the corresponding conjugates with the α(v)ß(3) targeting cyclic pentapeptide cRGDyK (monomeric H(2)RGD-1 and dimeric H(2)RGD-2). RESULTS: The ability of the conjugated ligands to coordinate Ga isotopes within 10 min at room temperature at concentrations of 1 nmol was confirmed. Complex [(67)Ga(RGD-1)](+) was more stable (92% after 2 h) than [(67)Ga(RGD-2)](+) (73% after 2 h) in a transferrin challenge experiment. IC(50) values for both conjugates (H(2)RGD-1 and H(2)RGD-2) and nonconjugated RGD were determined in a cell-based competitive binding assay with (125)I-echistatin using U87MG cells, where enhanced specific binding was observed for the multivalent H(2)RGD-2 conjugate compared to the monovalent H(2)RGD-1 and nonconjugated cRGDyK. The U87MG cell line was also used to generate subcutaneous xenograft tumors on RAG2M mice, which were used to evaluate the in vivo properties of [(68)Ga(RGD-1)](+) and [(68)Ga(RGD-2)](+). After 2 h of dynamic imaging, both block and nonblock mice were sacrificed to collect select organs at the 2-h time point. Although the uptake is specific, as judged from the ratios of nonblock to block (2.36 with [(67)Ga(RGD-1)](+), 1.46 with [(67)Ga(RGD-2)](+)), both conjugates display high uptake in blood. CONCLUSIONS: We have successfully synthesized and applied the first bifunctional versions of H(2)dedpa for conjugation to a targeting vector and subsequent imaging of the corresponding conjugates.


Assuntos
Quelantes/química , Reagentes de Ligações Cruzadas/química , Etilenodiaminas/química , Oligopeptídeos/síntese química , Ácidos Picolínicos/química , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Técnicas de Química Sintética , Radioisótopos de Gálio , Humanos , Integrina alfaVbeta3/metabolismo , Marcação por Isótopo , Masculino , Camundongos , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacocinética , Radioquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA