RESUMO
BACKGROUND: The ADME Core Panel assays 184 variants across 34 pharmacogenes, many of which are difficult to accurately genotype with standard multiplexing methods. METHODS: We genotyped 326 frequently medicated individuals of European descent in Vanderbilt's biorepository linked to de-identified electronic medical records, BioVU, on the ADME Core Panel to assess quality and performance of the assay. We compared quality control metrics and determined the extent of direct and indirect marker overlap between the ADME Core Panel and the Illumina Omni1-Quad. RESULTS: We found the quality of the ADME Core Panel data to be high, with exceptions in select copy number variants and markers in certain genes (notably CYP2D6). Most of the common variants on the ADME panel are genotyped by the Omni1, but absent rare variants and copy number variants could not be accurately tagged by single markers. CONCLUSION: Our frequently medicated study population did not convincingly differ in allele frequency from reference populations, suggesting that heterogeneous clinical samples (with respect to medications) have similar allele frequency distributions in pharmacogenetics genes compared with reference populations.
Assuntos
Registros Eletrônicos de Saúde , Marcadores Genéticos/genética , Farmacogenética , Polimedicação , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocromo P-450 CYP2D6/genética , Variações do Número de Cópias de DNA , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genética , Adulto JovemRESUMO
We have studied the interaction between extracellular K(+) (K(+)(o)) and extracellular Na(+) (Na(+)(o)) in human ether-à-go-go related gene (HERG)-encoded K(+) channels expressed in Chinese hamster ovary (CHO-K1) cells, using the whole-cell voltage clamp technique. Prior studies indicate that Na(+)(o) potently inhibits HERG current (IC(50) 3 mm) by binding to an outer pore site, and also speeds recovery from inactivation. In this study, we sought to explore the relationship between the Na(+)(o) effect on recovery and Na(+)(o) inhibition of HERG current, and to determine whether inactivation gating plays a critical role in Na(+)(o) inhibition of HERG current. Na(+)(o) concentration-response relationships for current inhibition and speeding of recovery were different, with Na(+)(o) less potent at speeding recovery. Na(+)(o) inhibition of HERG current was relieved by physiological [K(+)](o), while Na(+)(o) speeded recovery from inactivation similarly in the absence or presence of physiological [K(+)](o). To examine the link between Na(+)(o) block and inactivation using an independent approach, we studied hyperpolarization-activated currents uncoupled from inactivation in the S4-S5 linker mutant D540K. Depolarization-activated D540K currents were inhibited by Na(+)(o), while hyperpolarization-activated currents were augmented by Na(+)(o). This result reveals a direct link between Na(+)(o) inhibition and a depolarization-induced conformational change, most likely inactivation. We attempted to simulate the disparate concentration-response relationships for the two effects of Na(+)(o) using a kinetic model that included Na(+)(o) site(s) affected by permeation and gating. While a model with only a single dynamic Na(+)(o) site was inadequate, a model with two distinct Na(+)(o) sites was sufficient to reproduce the data.