Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(1): e2300230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37728197

RESUMO

Adeno-associated viruses (AAVs) have acquired a central role in modern medicine as delivery agents for gene therapies targeting rare diseases. While new AAVs with improved tissue targeting, potency, and safety are being introduced, their biomanufacturing technology is lagging. In particular, the AAV purification pipeline hinges on protein ligands for the affinity-based capture step. While featuring excellent AAV binding capacity and selectivity, these ligands require strong acid (pH <3) elution conditions, which can compromise the product's activity and stability. Additionally, their high cost and limited lifetime has a significant impact on the price tag of AAV-based therapies. Seeking to introduce a more robust and affordable affinity technology, this study introduces a cohort of peptide ligands that (i) mimic the biorecognition activity of the AAV receptor (AAVR) and anti-AAV antibody A20, (ii) enable product elution under near-physiological conditions (pH 6.0), and (iii) grant extended reusability by withstanding multiple regenerations. A20-mimetic CYIHFSGYTNYNPSLKSC and AAVR-mimetic CVIDGSQSTDDDKIC demonstrated excellent capture of serotypes belonging to distinct clones/clades - namely, AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. This corroborates the in silico models documenting their ability to target regions of the viral capsid that are conserved across all serotypes. CVIDGSQSTDDDKIC-Toyopearl resin features binding capacity (≈1014 vp mL-1 ) and product yields (≈60%-80%) on par with commercial adsorbents, and purifies AAV2 from HEK293 and Sf9 cell lysates with high recovery (up to 78%), reduction of host cell proteins (up to 700-fold), and high transduction activity (up to 65%).


Assuntos
Capsídeo , Dependovirus , Humanos , Dependovirus/genética , Capsídeo/química , Células HEK293 , Transdução Genética , Peptídeos/metabolismo , Ligantes , Cromatografia de Afinidade , Vetores Genéticos/genética
2.
Biotechnol Bioeng ; 120(8): 2283-2300, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37435968

RESUMO

Adeno-associated viruses (AAVs) are the vector of choice for delivering gene therapies that can cure inherited and acquired diseases. Clinical research on various AAV serotypes significantly increased in recent years alongside regulatory approvals of AAV-based therapies. The current AAV purification platform hinges on the capture step, for which several affinity resins are commercially available. These adsorbents rely on protein ligands-typically camelid antibodies-that provide high binding capacity and selectivity, but suffer from low biochemical stability and high cost, and impose harsh elution conditions (pH < 3) that can harm the transduction activity of recovered AAVs. Addressing these challenges, this study introduces peptide ligands that selectively capture AAVs and release them under mild conditions (pH = 6.0). The peptide sequences were identified by screening a focused library and modeled in silico against AAV serotypes 2 and 9 (AAV2 and AAV9) to select candidate ligands that target homologous sites at the interface of the VP1-VP2 and VP2-VP3 virion proteins with mild binding strength (KD ~ 10-5 -10- 6 M). Selected peptides were conjugated to Toyopearl resin and evaluated via binding studies against AAV2 and AAV9, demonstrating the ability to target both serotypes with values of dynamic binding capacity (DBC10% > 1013 vp/mL of resin) and product yields (~50%-80%) on par with commercial adsorbents. The peptide-based adsorbents were finally utilized to purify AAV2 from a HEK 293 cell lysate, affording high recovery (50%-80%), 80- to 400-fold reduction of host cell proteins (HCPs), and high transduction activity (up to 80%) of the purified viruses.


Assuntos
Dependovirus , Peptídeos , Humanos , Dependovirus/genética , Células HEK293 , Ligantes , Peptídeos/genética , Peptídeos/metabolismo , Sequência de Aminoácidos , Vetores Genéticos
3.
Hum Gene Ther ; 34(7-8): 259-272, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36860188

RESUMO

The manufacturing of gene therapy products is a rapidly growing industry bolstered by the tremendous potential of these therapies to provide lifesaving treatment for rare and complex genetic diseases. The industry's steep rise has resulted in a high demand for skilled staff required to manufacture gene therapy products of the expected high quality. To address this skill shortage, more opportunities for education and training in all aspects of gene therapy manufacturing are needed. The Biomanufacturing Training and Education Center (BTEC) at the North Carolina State University (NC State) has developed and delivered (and continues to deliver) a 4-day, hands-on course titled Hands-on cGMP Biomanufacturing of Vectors for Gene Therapy. The course, which consists of 60% hands-on laboratory activities and 40% lectures, aims to provide a comprehensive understanding of the gene therapy production process, from vial thaw through the final formulation step, and analytical testing. This article discusses the design of the course, the backgrounds of the nearly 80 students who have participated in the seven offerings held since March 2019, and feedback from the course participants.


Assuntos
Dependovirus , Terapia Genética , Humanos , Dependovirus/genética , Comércio , Vetores Genéticos/genética
4.
J Chromatogr A ; 1612: 460629, 2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-31668416

RESUMO

The purpose of this work was to compare side by side the performance of packed bed and membrane chromatography adsorption processes for protein purification. The comparison was performed using anion exchange media with the same ligand immobilized on the adsorbing surface, namely the strong Q quaternary ammonium group, R-CH2-N+-(CH3)3, and bovine serum albumin (BSA) as a model protein. In addition, the stationary phase volume was held constant for each geometry (3 mL) and runs were executed using the same mobile phase superficial velocity. As expected, the packed bed column showed higher equilibrium binding of BSA at 66.9 mg/mL versus 43.04 mg/mL for the membrane adsorber. Dynamic binding capacities were also higher in the packed bed; for example, at 97.5 cm/h, a capacity of 62.8 mg/mL was measured for the packed bed versus 20.7 mg/mL for the membrane adsorber. The higher equilibrium and dynamic capacities of the packed bed are likely due to the higher surface area per unit volume of the resin. However, the maximum productivity for the membrane adsorber was 111 mg/(mL h), a value that was 3.3 times higher than the one of the packed column. The bed utilization - defined as the ratio of the dynamic binding capacity at 10% breakthrough to the saturation binding capacity - was also higher for the packed column at long residence times and lower at short residence times confirming the better performance of membrane chromatography at high flow rates.


Assuntos
Cromatografia por Troca Iônica/métodos , Proteínas/isolamento & purificação , Adsorção , Resinas de Troca Aniônica , Soroalbumina Bovina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA