Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0277279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235625

RESUMO

BACKGROUND: Evidence-based empirical antibiotic prescribing requires knowledge of local antimicrobial resistance patterns. The spectrum of pathogens and their susceptibility strongly influences guidelines for empirical therapies for urinary tract infections (UTI) management. OBJECTIVE: This study aimed to determine the prevalence of UTI causative bacteria and their corresponding antibiotic resistance profiles in three counties of Kenya. Such data could be used to determine the optimal empirical therapy. METHODS: In this cross-sectional study, urine samples were collected from patients who presented with symptoms suggestive of UTI in the following healthcare facilities; Kenyatta National Hospital, Kiambu Hospital, Mbagathi, Makueni, Nanyuki, Centre for Microbiology Research, and Mukuru Health Centres. Urine cultures were done on Cystine Lactose Electrolyte Deficient (CLED) to isolate UTI bacterial etiologies, while antibiotic sensitivity testing was done using the Kirby-Bauer disk diffusion using CLSI guidelines and interpretive criteria. RESULTS: A total of 1,027(54%) uropathogens were isolated from the urine samples of 1898 participants. Staphylococcus spp. and Escherichia coli were the main uropathogens at 37.6% and 30.9%, respectively. The percentage resistance to commonly used drugs for the treatment of UTI were as follows: trimethoprim (64%), sulfamethoxazole (57%), nalidixic acid(57%), ciprofloxacin (27%), amoxicillin-clavulanic acid (5%), and nitrofurantoin (9%) and cefixime (9%). Resistance rates to broad-spectrum antimicrobials, such as ceftazidime, gentamicin, and ceftriaxone, were 15%, 14%, and 11%, respectively. Additionally, the proportion of Multidrug-resistant (MDR) bacteria was 66%. CONCLUSION: High resistance rates toward fluoroquinolones, sulfamethoxazole, and trimethoprim were reported. These antibiotics are commonly used drugs as they are inexpensive and readily available. Based on these findings, more robust standardised surveillance is needed to confirm the patterns observed while recognising the potential impact of sampling biases on observed resistance rates.


Assuntos
Antibacterianos , Infecções Urinárias , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Quênia/epidemiologia , Estudos Transversais , Farmacorresistência Bacteriana , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia , Bactérias , Trimetoprima/uso terapêutico , Escherichia coli , Sulfametoxazol , Instalações de Saúde , Testes de Sensibilidade Microbiana
2.
Tuberculosis (Edinb) ; 138: 102275, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36434867

RESUMO

BACKGROUND: Mycobacterium tuberculosis is a category B infectious pathogen requiring level-3-containment laboratories for handling. We assessed the efficacy of heat and Guanidine thiocyanate (GTC) to inactivate M. tuberculosis prior to performance of tuberculosis Molecular Bacterial Load Assay (TB-MBLA). METHOD: We performed in vitro experiments using M.tb, H37Rv reference strain and replicated in sputum specimens. A 0.5 MacFarland standard of M. tuberculosis was serially diluted to 1x101 CFU/mL and pooled sputum was homogenised prior to serial dilutions and Xpert MTB/RIF Ultra. Three replicates for each containing 1 mL for M. tuberculosis and sputum were inactivated at 80 °C for 20 min and with GTC for 15 min. Inactivated samples were processed for culture and TB-MBLA. RESULTS: No M. tuberculosis growth was observed in MGIT for GTC or heat treated H37Rv cultures. All untreated H37Rv dilutions were MGIT positive except the most diluted specimens. Heat and GTC treatment of H37Rv reduced TB-MBLA load by 2.1log10 (P = 0.7) and 1.8log10 (P = 0.7) respectively, compared to controls. In contrast, heat treated sputum had TB-MBLA bacterial load of 3.47 ± 3.53 log10 compared to 5.4 ± 3.1 log10 eCFU/mL for GTC (p = 0.57). All heat and GTC treated sputum were culture negative. CONCLUSION: Heat or GTC renders M. tuberculosis non-viable and eliminates the need for BSL3 laboratory for performing TB-MBLA in routine healthcare settings.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Carga Bacteriana , Laboratórios , Contenção de Riscos Biológicos , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose/microbiologia , Escarro/microbiologia
3.
Sci Rep ; 12(1): 19393, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371444

RESUMO

Understanding the response of bacteria to environmental stress is hampered by the relative insensitivity of methods to detect growth. This means studies of antibiotic resistance and other physiological methods often take 24 h or longer. We developed and tested a scattered light and detection system (SLIC) to address this challenge, establishing the limit of detection, and time to positive detection of the growth of small inocula. We compared the light-scattering of bacteria grown in varying high and low nutrient liquid medium and the growth dynamics of two closely related organisms. Scattering data was modelled using Gompertz and Broken Stick equations. Bacteria were also exposed meropenem, gentamicin and cefoxitin at a range of concentrations and light scattering of the liquid culture was captured in real-time. We established the limit of detection for SLIC to be between 10 and 100 cfu mL-1 in a volume of 1-2 mL. Quantitative measurement of the different nutrient effects on bacteria were obtained in less than four hours and it was possible to distinguish differences in the growth dynamics of Klebsiella pneumoniae 1705 possessing the BlaKPC betalactamase vs. strain 1706 very rapidly. There was a dose dependent difference in the speed of action of each antibiotic tested at supra-MIC concentrations. The lethal effect of gentamicin and lytic effect of meropenem, and slow bactericidal effect of cefoxitin were demonstrated in real time. Significantly, strains that were sensitive to antibiotics could be identified in seconds. This research demonstrates the critical importance of improving the sensitivity of bacterial detection. This results in more rapid assessment of susceptibility and the ability to capture a wealth of data on the growth dynamics of bacteria. The rapid rate at which killing occurs at supra-MIC concentrations, an important finding that needs to be incorporated into pharmacokinetic and pharmacodynamic models. Importantly, enhanced sensitivity of bacterial detection opens the possibility of susceptibility results being reportable clinically in a few minutes, as we have demonstrated.


Assuntos
Antibacterianos , Cefoxitina , Antibacterianos/farmacocinética , Meropeném/farmacologia , Cefoxitina/farmacologia , Klebsiella pneumoniae , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana
4.
J Clin Microbiol ; 57(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31018981

RESUMO

Effective methods to detect viable Mycobacterium tuberculosis, the main causative agent of tuberculosis (TB), are urgently needed. To date, cultivation of M. tuberculosis is the gold standard, which depends on initial sample processing with N-acetyl-l-cysteine-sodium hydroxide (NALC-NaOH), chemicals that compromise M. tuberculosis viability and, consequently, the performance of downstream tests. We applied culture and the novel molecular bacterial load assay (MBLA) to measure the loss of M. tuberculosis viability following NALC-NaOH treatment of M. tuberculosis H37Rv pure culture and clinical sputum samples from pulmonary TB patients. Compared to the bacterial loads of untreated controls, NALC-NaOH treatment of M. tuberculosis reduced the MBLA-detectable bacillary load (estimated number of CFU [eCFU] per milliliter) by 0.66 ± 0.21 log10 at 23°C (P = 0.018) and 0.72 ± 0.08 log10 at 30°C (P = 0.013). Likewise, NALC-NaOH treatment reduced the viable count on solid culture by 0.84 ± 0.02 log10 CFU/ml at 23°C (P < 0.001) and 0.85 ± 0.01 log10 CFU/ml at 30°C (P < 0.001), respectively. The reduction in the viable count was reflected by a corresponding increase in the time to positivity of the mycobacterial growth indicator tube (MGIT) liquid culture: 1.2 days at 23°C (P < 0.001) and 1.1 days at 30°C (P < 0.001). This NaOH-induced M. tuberculosis viability loss was replicated in clinical sputum samples, with the bacterial load dropping by 0.65 ± 0.17 log10 from 5.36 ± 0.24 log10 eCFU/ml to 4.71 ± 0.16 log10 eCFU/ml for untreated and treated sputa, respectively. Applying the model of Bowness et al. (R. Bowness, M. J. Boeree, R. Aarnoutse, R. Dawson, et al., J Antimicrob Chemother 70:448-455, 2015, https://doi.org/10.1093/jac/dku415) revealed that the treated MGIT time to culture positivity of 142 ± 7.02 h was equivalent to 4.86 ± 0.28 log10 CFU, consistent with the MBLA-measured bacterial load. Our study confirms the contribution of NALC-NaOH treatment to the loss of viable bacterial counts. Tests that obviate the need for decontamination may offer an alternative option for the accurate detection of viable M. tuberculosis and treatment response monitoring.


Assuntos
Carga Bacteriana/métodos , Mycobacterium tuberculosis/isolamento & purificação , Hidróxido de Sódio/toxicidade , Tuberculose/microbiologia , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Testes Diagnósticos de Rotina , Viabilidade Microbiana/efeitos dos fármacos , Técnicas de Diagnóstico Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Manejo de Espécimes , Escarro/microbiologia , Temperatura , Fatores de Tempo , Tuberculose/diagnóstico
5.
Front Immunol ; 9: 2247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323818

RESUMO

Background: The analysis of phenotypic characteristics on Mycobacterium tuberculosis (MTB)-specific T cells is a promising approach for the diagnosis of active tuberculosis (aTB) and for monitoring treatment success. We therefore studied phenotypic changes on MTB-specific CD4 T cells upon anti-tuberculosis treatment initiation in relation to the treatment response as determined by sputum culture. Methods: Peripheral blood mononuclear cells from subjects with latent MTB infection (n = 16) and aTB (n = 39) at baseline, weeks 9, 12, and 26 (end of treatment) were analyzed after intracellular interferon gamma staining and overnight stimulation with tuberculin. Liquid sputum cultures were performed weekly until week 12 and during 4 visits until week 26. Results: T cell activation marker expression on MTB-specific CD4 T cells differed significantly between subjects with aTB and latent MTB infection with no overlap for the frequencies of CD38pos and Ki67pos cells (both p < 0.0001). At 9 weeks after anti-TB treatment initiation the frequencies of activation marker (CD38, HLA-DR, Ki67) positive MTB-specific, but not total CD4 T cells, were significantly reduced (p < 0.0001). Treatment induced phenotypic changes from baseline until week 9 and until week 12 differed substantially between individual aTB patients and correlated with an individual's time to stable sputum culture conversion for expression of CD38 and HLA-DR (both p < 0.05). In contrast, the frequencies of maturation marker CD27 positive MTB-specific CD4 T cells remained largely unchanged until week 26 and significantly differed between subjects with treated TB disease and latent MTB infection (p = 0.0003). Discussion: Phenotypic changes of MTB-specific T cells are potential surrogate markers for tuberculosis treatment efficacy and can help to discriminate between aTB (profile: CD38pos, CD27low), treated TB (CD38neg, CD27low), and latent MTB infection (CD38neg, CD27high).


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Mycobacterium tuberculosis/imunologia , Fenótipo , Tuberculose/sangue , Tuberculose/terapia , ADP-Ribosil Ciclase 1/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores , Feminino , Seguimentos , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Escarro/microbiologia , Resultado do Tratamento , Tuberculina/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Adulto Jovem
6.
Tuberculosis (Edinb) ; 110: 56-58, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29779774

RESUMO

The Xpert MTB/RIF assay detects Mycobacterium tuberculosis in unprocessed or NALC/NaOH- decontaminated sputum. The effect of repeated NALC/NaOH-decontamination on several Xpert performance parameters was assessed in this study. A second NALC/NaOH-decontamination had no effect on the binary Xpert-outcome but increased the value for the quantitative readout (CTmin). Repeated decontamination was not associated with PCR-inhibition or invalid results. The CTmin of M.tb positive samples was higher in inhibited Xpert runs. Our data indicate that NALC/NaOH-decontamination has an effect on the performance of the Xpert assay, and that CTmin readouts of decontaminated sputum samples should be interpreted with caution.


Assuntos
Acetilcisteína , Descontaminação , Mycobacterium tuberculosis , Hidróxido de Sódio , Manejo de Espécimes , Humanos , Acetilcisteína/química , Técnicas Bacteriológicas/métodos , Descontaminação/métodos , Mycobacterium tuberculosis/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Hidróxido de Sódio/química , Manejo de Espécimes/métodos , Escarro/microbiologia , Tuberculose/diagnóstico
7.
J Theor Biol ; 446: 87-100, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29524441

RESUMO

If improvements are to be made in tuberculosis (TB) treatment, an increased understanding of disease in the lung is needed. Studies have shown that bacteria in a less metabolically active state, associated with the presence of lipid bodies, are less susceptible to antibiotics, and recent results have highlighted the disparity in concentration of different compounds into lesions. Treatment success therefore depends critically on the responses of the individual bacteria that constitute the infection. We propose a hybrid, individual-based approach that analyses spatio-temporal dynamics at the cellular level, linking the behaviour of individual bacteria and host cells with the macroscopic behaviour of the microenvironment. The individual elements (bacteria, macrophages and T cells) are modelled using cellular automaton (CA) rules, and the evolution of oxygen, drugs and chemokine dynamics are incorporated in order to study the effects of the microenvironment in the pathological lesion. We allow bacteria to switch states depending on oxygen concentration, which affects how they respond to treatment. This is the first multiscale model of its type to consider both oxygen-driven phenotypic switching of the Mycobacterium tuberculosis and antibiotic treatment. Using this model, we investigate the role of bacterial cell state and of initial bacterial location on treatment outcome. We demonstrate that when bacteria are located further away from blood vessels, less favourable outcomes are more likely, i.e. longer time before infection is contained/cleared, treatment failure or later relapse. We also show that in cases where bacteria remain at the end of simulations, the organisms tend to be slower-growing and are often located within granulomas, surrounded by caseous material.


Assuntos
Antibacterianos/uso terapêutico , Granuloma , Modelos Biológicos , Mycobacterium tuberculosis/metabolismo , Tuberculose Pulmonar , Granuloma/tratamento farmacológico , Granuloma/metabolismo , Granuloma/microbiologia , Humanos , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/metabolismo
8.
BMC Med ; 14: 19, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26847437

RESUMO

BACKGROUND: Despite recent increased clinical trials activity, no regimen has proved able to replace the standard 6-month regimen for drug-sensitive tuberculosis. Understanding the relationship between microbiological markers measured during treatment and long-term clinical outcomes is critical to evaluate their usefulness for decision-making for both individual patient care and for advancing novel regimens into time-consuming and expensive pivotal phase III trials. METHODS: Using data from the randomized controlled phase III trial REMoxTB, we evaluated sputum-based markers of speed of clearance of bacilli: time to smear negative status; time to culture negative status on LJ or in MGIT; daily rate of change of log10(TTP) to day 56; and smear or culture results at weeks 6, 8 or 12; as individual- and trial-level surrogate endpoints for long-term clinical outcome. RESULTS: Time to culture negative status on LJ or in MGIT, time to smear negative status and daily rate of change in log10(TTP) were each independent predictors of clinical outcome, adjusted for treatment (p <0.001). However, discrimination between low and high risk patients, as measured by the c-statistic, was modest and not much higher than the reference model adjusted for BMI, history of smoking, HIV status, cavitation, gender and MGIT TTP. CONCLUSIONS: Culture conversion during treatment for tuberculosis, however measured, has only a limited role in decision-making for advancing regimens into phase III trials or in predicting the outcome of treatment for individual patients. REMoxTB ClinicalTrials.gov number: NCT00864383.


Assuntos
Antituberculosos/uso terapêutico , Biomarcadores , Escarro/microbiologia , Tuberculose/tratamento farmacológico , Adulto , Tomada de Decisões , Progressão da Doença , Resistência Microbiana a Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Assistência ao Paciente/métodos , Tuberculose/microbiologia
9.
Am J Respir Crit Care Med ; 176(2): 181-7, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17463416

RESUMO

RATIONALE: Increasing evidence supports a key role for the transcription factor nuclear factor (NF)-kappaB in the host response to pneumococcal infection. Control of NF-kappaB activity is achieved through interactions with the IkappaB family of inhibitors, encoded by the genes NFKBIA, NFKBIB, and NFKBIE. Rare NFKBIA mutations cause immunodeficiency with severe bacterial infection, raising the possibility that common IkappaB gene polymorphisms confer susceptibility to common bacterial disease. OBJECTIVES: To determine whether polymorphisms in NFKBIA, NFKBIB, and NFKBIE associate with susceptibility to invasive pneumococcal disease (IPD) and thoracic empyema. METHODS: We studied the frequencies of 62 single-nucleotide polymorphisms (SNPs) across NFKBIA, NFKBIB, and NFKBIE in individuals with IPD and control subjects (n=1,060). Significantly associated SNPs were then studied in a group of individuals with thoracic empyema and a second control group (n=632). MEASUREMENTS AND MAIN RESULTS: Two SNPs in the NFKBIA promoter region were associated with protection from IPD in both the initial study group and the pneumococcal empyema subgroup. Significant protection from IPD was observed for carriage of mutant alleles at these two loci on combining the groups (SNP rs3138053: Mantel-Haenszel 2x2 chi2=13.030, p=0.0003; odds ratio [OR], 0.60; 95% confidence interval [CI], 0.45-0.79; rs2233406: Mantel-Haenszel 2x2 chi2=18.927, p=0.00001; OR, 0.55; 95% CI, 0.42-0.72). An NFKBIE SNP associated with susceptibility to IPD but not pneumococcal empyema. None of the NFKBIB SNPs associated with IPD susceptibility. CONCLUSIONS: NFKBIA polymorphisms associate with susceptibility to IPD. Genetic variation in an inhibitor of NF-kappaB therefore not only causes a very rare immunodeficiency state but may also influence the development of common infectious disease.


Assuntos
Empiema Pleural/genética , Proteínas I-kappa B/genética , Infecções Pneumocócicas/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética , Adulto , Estudos de Casos e Controles , Empiema Pleural/microbiologia , Predisposição Genética para Doença , Humanos , Inibidor de NF-kappaB alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA