Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arthritis Res Ther ; 26(1): 73, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509602

RESUMO

BACKGROUND: Pain from osteoarthritis (OA) is one of the top causes of disability worldwide, but effective treatment is lacking. Nociceptive factors are released by activated synovial macrophages in OA, but depletion of synovial macrophages paradoxically worsens inflammation and tissue damage in previous studies. Rather than depleting macrophages, we hypothesized that inhibiting macrophage activation may improve pain without increasing tissue damage. We aimed to identify key mechanisms mediating synovial macrophage activation and test the role of STAT signaling in macrophages on pain outcomes in experimental knee OA. METHODS: We induced experimental knee OA in rats via knee destabilization surgery, and performed RNA sequencing analysis on sorted synovial tissue macrophages to identify macrophage activation mechanisms. Liposomes laden with STAT1 or STAT6 inhibitors, vehicle (control), or clodronate (depletion control) were delivered selectively to synovial macrophages via serial intra-articular injections up to 12 weeks after OA induction. Treatment effects on knee and hindpaw mechanical pain sensitivity were measured during OA development, along with synovitis, cartilage damage, and synovial macrophage infiltration using histopathology and immunofluorescence. Lastly, crosstalk between drug-treated synovial tissue and articular chondrocytes was assessed in co-culture. RESULTS: The majority of pathways identified by transcriptomic analyses in OA synovial macrophages involve STAT signaling. As expected, macrophage depletion reduced pain, but increased synovial tissue fibrosis and vascularization. In contrast, STAT6 inhibition in macrophages led to marked, sustained improvements in mechanical pain sensitivity and synovial inflammation without worsening synovial or cartilage pathology. During co-culture, STAT6 inhibitor-treated synovial tissue had minimal effects on healthy chondrocyte gene expression, whereas STAT1 inhibitor-treated synovium induced changes in numerous cartilage turnover-related genes. CONCLUSION: These results suggest that STAT signaling is a major mediator of synovial macrophage activation in experimental knee OA. STAT6 may be a key mechanism mediating the release of nociceptive factors from macrophages and the development of mechanical pain sensitivity. Whereas therapeutic depletion of macrophages paradoxically increases inflammation and fibrosis, blocking STAT6-mediated synovial macrophage activation may be a novel strategy for OA-pain management without accelerating tissue damage.


Assuntos
Osteoartrite do Joelho , Fator de Transcrição STAT6 , Animais , Ratos , Fibrose , Inflamação/patologia , Ativação de Macrófagos , Osteoartrite do Joelho/patologia , Dor/patologia , Membrana Sinovial/patologia , Fator de Transcrição STAT6/metabolismo
2.
Adv Healthc Mater ; 12(22): e2202807, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37053473

RESUMO

Infection is a major complication associated with orthopedic implants. It often involves the development of biofilms on metal substrates, which act as barriers to the host's immune system and systemic antibiotic treatment. The current standard of treatment is revision surgery, often involving the delivery of antibiotics through incorporation into bone cements. However, these materials exhibit sub-optimal antibiotic release kinetics and revision surgeries have drawbacks of high cost and recovery time. Herein, a new approach is presented using induction heating of a metal substrate, combined with an antibiotic-loaded poly(ester amide) coating undergoing a glass transition just above physiological temperature to enable thermally triggered antibiotic release. At normal physiological temperature, the coating provides a rifampicin depot for >100 days, while heating of the coating accelerates drug release, with >20% release over a 1-h induction heating cycle. Induction heating or antibiotic-loaded coating alone each reduce Staphylococcus aureus (S. aureus) viability and biofilm formation on Ti, but the combination causes synergistic killing of S. aureus as measured by crystal violet staining, determination of bacterial viability (>99.9% reduction), and fluorescence microscopy of bacteria on surfaces. Overall, these materials provide a promising platform enabling externally triggered antibiotic release to prevent and/or treat bacterial colonization of implants.


Assuntos
Antibacterianos , Infecções Estafilocócicas , Humanos , Antibacterianos/química , Titânio/farmacologia , Titânio/química , Polímeros , Staphylococcus aureus , Calefação , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Biofilmes , Infecções Estafilocócicas/tratamento farmacológico
3.
Biomater Sci ; 10(10): 2557-2567, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35225988

RESUMO

Nucleic acids have immense potential for the treatment and prevention of a wide range of diseases, but delivery vehicles are needed to assist with their entry into cells. Polycations can reversibly complex with nucleic acids via ionic interactions to form polyplexes and transport them into cells, but they are still hindered by the need to balance cytotoxicity and delivery effectiveness. In this work, we describe a new self-immolative polyglyoxylamide (PGAm) platform designed to address these challenges by complexing nucleic acids via multivalent interactions in the polymeric form and releasing them upon depolymerization. Nine PGAms were synthesized and characterized, with different end-caps and variable cationic pendent groups. The PGAms underwent depolymerization under mildly acidic conditions, with rates dependent on their pendent groups and end-caps. They complexed plasmid DNA, forming cationic nanoparticles, and released it upon depolymerization. Cytotoxicity assays of the PGAms and polyplexes in HEK 293T cells showed a decrease in toxicity following depolymerization, and all samples exhibited much lower toxicity than a commercial non-degradable linear polyethyleneimine (jetPEI) transfection agent. Transfection assays revealed that selected PGAms provided similar levels of reporter gene expression to jetPEI in vitro with a PGAm analogue of poly[2-(dimethylamino)ethyl methacrylate] having particularly interesting activity that was dependent on depolymerization, along with low cytotoxicity. Overall, these results indicate that end-to-end depolymerization of self-immolative polymers can provide a new and promising tool for nucleic acid delivery.


Assuntos
DNA , Ácidos Nucleicos , DNA/metabolismo , Técnicas de Transferência de Genes , Plasmídeos , Polietilenoimina , Polímeros , Transfecção
4.
Biomed Mater ; 16(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33711838

RESUMO

Osteoarthritis (OA) is a leading cause of chronic disability. It is a progressive disease, involving pathological changes to the entire joint, resulting in joint pain, stiffness, swelling, and loss of mobility. There is currently no disease-modifying pharmaceutical treatment for OA, and the treatments that do exist suffer from significant side effects. An increasing understanding of the molecular pathways involved in OA is leading to many potential drug targets. However, both current and new therapies can benefit from a targeted approach that delivers drugs selectively to joints at therapeutic concentrations, while limiting systemic exposure to the drugs. Delivery systems including hydrogels, liposomes, and various types of particles have been explored for intra-articular drug delivery. This review will describe progress over the past several years in the development of polymer-based particles for OA treatment, as well as theirin vitro, in vivo, and clinical evaluation. Systems based on biopolymers such as polysaccharides and polypeptides, as well as synthetic polyesters, poly(ester amide)s, thermoresponsive polymers, poly(vinyl alcohol), amphiphilic polymers, and dendrimers will be described. We will discuss the role of particle size, biodegradability, and mechanical properties in the behavior of the particles in the joint, and the challenges to be addressed in future research.


Assuntos
Osteoartrite , Polímeros , Sistemas de Liberação de Medicamentos , Humanos , Hidrogéis , Injeções Intra-Articulares , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia
5.
Biomacromolecules ; 21(1): 152-162, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31502452

RESUMO

Polyelectrolyte complexation, the combination of anionically and cationically charged polymers through ionic interactions, can be used to form hydrogel networks. These networks can be used to encapsulate and release cargo, but the release of cargo is typically rapid, occurring over a period of hours to a few days and they often exhibit weak, fluid-like mechanical properties. Here we report the preparation and study of polyelectrolyte complexes (PECs) from sodium hyaluronate (HA) and poly[tris(hydroxypropyl)(4-vinylbenzyl)phosphonium chloride], poly[triphenyl(4-vinylbenzyl)phosphonium chloride], poly[tri(n-butyl)(4-vinylbenzyl)phosphonium chloride], or poly[triethyl(4-vinylbenzyl)phosphonium chloride]. The networks were compacted by ultracentrifugation, then their composition, swelling, rheological, and self-healing properties were studied. Their properties depended on the structure of the phosphonium polymer and the salt concentration, but in general, they exhibited predominantly gel-like behavior with relaxation times greater than 40 s and self-healing over 2-18 h. Anionic molecules, including fluorescein, diclofenac, and adenosine-5'-triphosphate, were encapsulated into the PECs with high loading capacities of up to 16 wt %. Fluorescein and diclofenac were slowly released over 60 days, which was attributed to a combination of hydrophobic and ionic interactions with the dense PEC network. The cytotoxicities of the polymers and their corresponding networks with HA to C2C12 mouse myoblast cells was investigated and found to depend on the structure of the polymer and the properties of the network. Overall, this work demonstrates the utility of polyphosphonium-HA networks for the loading and slow release of ionic drugs and that their physical and biological properties can be readily tuned according to the structure of the phosphonium polymer.


Assuntos
Compostos Organofosforados/química , Polieletrólitos/química , Polieletrólitos/farmacocinética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/farmacocinética , Animais , Linhagem Celular , Diclofenaco/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Fluoresceína/química , Fluoresceína/farmacocinética , Ácido Hialurônico/química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Microscopia Eletrônica de Varredura , Mioblastos/efeitos dos fármacos , Polieletrólitos/toxicidade , Polímeros/síntese química , Reologia , Testes de Toxicidade , Ultracentrifugação
6.
Biotechnol J ; 15(3): e1900118, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31657515

RESUMO

While extracellular matrix (ECM)-derived coatings have the potential to direct the response of cell populations in culture, there is a need to investigate the effects of ECM sourcing and processing on substrate bioactivity. To develop improved cell culture models for studying adipogenesis, the current study examines the proliferation and adipogenic differentiation of human adipose-derived stem/stromal cells (ASCs) on a range of ECM-derived coatings. Human decellularized adipose tissue (DAT) and commercially available bovine tendon collagen (COL) are digested with α-amylase or pepsin to prepare the coatings. Physical characterization demonstrates that α-amylase digestion generates softer, thicker, and more stable coatings, with a fibrous tissue-like ultrastructure that is lost in the pepsin-digested thin films. ASCs cultured on the α-amylase-digested ECM have a more spindle-shaped morphology, and proliferation is significantly enhanced on the α-amylase-digested DAT coatings. Further, the α-amylase-digested DAT provides a more pro-adipogenic microenvironment, based on higher levels of adipogenic gene expression, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, and perilipin staining. Overall, this study supports α-amylase digestion as a new approach for generating bioactive ECM-derived coatings, and demonstrates tissue-specific bioactivity using adipose-derived ECM to enhance ASC proliferation and adipogenic differentiation.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/enzimologia , alfa-Amilases/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo/ultraestrutura , Animais , Bovinos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Colágeno/química , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletroquímica de Varredura , Tendões/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
7.
J Biomed Mater Res A ; 107(6): 1235-1243, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30698325

RESUMO

Many potential pharmacological treatments for osteoarthritis can result in undesirable side effects due to the systemic administration of drugs, making the direct delivery of drugs to joints an attractive alternative. Poly(ester amide)s (PEAs) have been shown to exhibit promising properties for the development of particle-based intra-articular delivery vehicles. However, a limited range of PEA structures has been investigated. In this study, we prepared and characterized the properties of two different PEA particles composed of l-phenylalanine, sebacic acid, and either 1,4-butanediol or 1,8-octanediol (PBSe and POSe, respectively). The anti-inflammatory drug celecoxib (CXB) was encapsulated into the particles. Despite minor structural differences, PBSe and POSe exhibited different thermal and mechanical properties, and encapsulation of CXB influenced these properties. PBSe-CXB particles provided a slower release of drug in vitro relative to POSe-CXB. Toxicity studies showed that particles without drug exhibited low toxicity to ATDC5 and C2C12 cells, while the PBSe-CXB particles exhibited concentration-dependent toxicity. Host response to the particles was evaluated in an ovine model. No adverse effects were observed following intra-articular injection and it was observed that the particles diffused into the surrounding tissues. This work shows the importance of structural tuning in PEA delivery vehicles and demonstrates their potential for further development. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1235-1243, 2019.


Assuntos
Poliaminas , Poliésteres , Animais , Celecoxib/química , Celecoxib/farmacocinética , Celecoxib/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Poliaminas/química , Poliaminas/farmacocinética , Poliaminas/farmacologia , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Ratos
8.
Angew Chem Int Ed Engl ; 58(12): 3690-3693, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30653795

RESUMO

The purpose of this Viewpoint is to discuss the molecular design principles that guide development of synthetic antimicrobial polymers, especially those intended to mimic the structure of host defense peptides (HDPs). In particular, we focus on the principle of "amphiphilic balance" as it relates to some recently developed polyphosphoniums with somewhat atypical structure. We find that the fundamental concept of amphiphilic balance is still applicable to these new polymers, but that the method to achieve such balance is somewhat unique. We then briefly outline the future challenges and opportunities in this field.


Assuntos
Antibacterianos/química , Polímeros/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Polímeros/farmacologia , Poliestirenos/química , Relação Estrutura-Atividade
9.
Angew Chem Int Ed Engl ; 57(39): 12707-12710, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-29996005

RESUMO

There is currently an urgent need for the development of new antibacterial agents to combat the spread of antibiotic-resistant bacteria. We explored the synthesis and antibacterial activities of novel, sugar-functionalized phosphonium polymers. While these compounds exhibited antibacterial activity, we unexpectedly found that the control polymer poly(tris(hydroxypropyl)vinylbenzylphosphonium chloride) showed very high activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus and very low haemolytic activity against red blood cells. These results challenge the conventional wisdom in the field that lipophilic alkyl substituents are required for high antibacterial activity and opens prospects for new classes of antibacterial polymers.


Assuntos
Antibacterianos/química , Polímeros/química , Açúcares/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Compostos Organofosforados/química , Polímeros/síntese química , Polímeros/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Compostos de Vinila/química
10.
Langmuir ; 33(51): 14738-14747, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29179545

RESUMO

The ability to manipulate block copolymers on the nanoscale has led to many scientific and technological advances. These include nanoscale ordered bulk and thin films and also solution phase components; these are promising materials for making smaller ordered electronics, selective membranes, and also biomedical applications. The ability to manipulate block copolymer material architectures on such small scales has risen from thorough investigations into the properties that affect the architectures. Polyelectrolytes are an important class of polymers that are used to make amphiphilic block copolymers. In this context the authors synthesized polystyrene-b-polyphosphonium block copolymers with different anions coordinated to the polyphosphonium block in order to study the effect of the anion on the aqueous self-assembly of the polymers. The anions play an important role in the solubility of the monomeric materials which results in differences in the self-assembly observed through dynamic light scattering and transmission electron microscopy.

11.
Mol Pharm ; 14(8): 2548-2559, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28294625

RESUMO

The ability to disrupt polymer assemblies in response to specific stimuli provides the potential to release drugs selectively at certain sites or conditions in vivo. However, most stimuli-responsive delivery systems require many stimuli-initiated events to release drugs. "Self-immolative polymers" offer the potential to provide amplified responses to stimuli as they undergo complete end-to-end depolymerization following the cleavage of a single end-cap. Herein, linker end-caps were developed to conjugate self-immolative poly(ethyl glyoxylate) (PEtG) with poly(ethylene oxide) (PEO) to form amphiphilic block copolymers. These copolymers were self-assembled to form nanoparticles in aqueous solution. Cleavage of the linker end-caps were triggered by a thiol reducing agent, UV light, H2O2, and combinations of these stimuli, resulting in nanoparticle disintegration. Low stimuli concentrations were effective in rapidly disrupting the nanoparticles. Nile red, doxorubin, and curcumin were encapsulated into the nanoparticles and were selectively released upon application of the appropriate stimulus. The ability to tune the stimuli-responsiveness simply by changing the linker end-cap makes this new platform highly attractive for applications in drug delivery.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Metilmetacrilatos/química , Nanopartículas/química , Polietilenoglicóis/química , Curcumina/química , Liberação Controlada de Fármacos , Peróxido de Hidrogênio/química
12.
Nanoscale ; 8(40): 17694-17704, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27714067

RESUMO

Nanoassemblies presenting multivalent displays of biologically active carbohydrates are of significant interest for a wide array of biomedical applications ranging from drug delivery to immunotherapy. In this study, glycodendron-lipid hybrids were developed as a new and tunable class of dendritic amphiphiles. A modular synthesis was used to prepare dendron-lipid hybrids comprising distearylglycerol and 0 through 4th generation polyester dendrons with peripheral protected amines. Following deprotection of the amines, an isothiocyanate derivative of C-linked α-galactose (α-Gal) was conjugated to the dendron peripheries, affording amphiphiles with 1 to 16 α-Gal moieties. Self-assembly in water through a solvent exchange process resulted in vesicles for the 0 through 2nd generation systems and micelles for the 3rd and 4th generation systems. The critical aggregation concentrations decreased with increasing dendron generation, suggesting that the effects of increasing molar mass dominated over the effects of increasing the hydrophilic weight fraction. The binding of the assemblies to Griffonia simplicifolia Lectin I (GSL 1), a protein with specificity for α-Gal was studied by quantifying the binding of fluorescently labeled assemblies to GSL 1-coated beads. It was found that binding was enhanced for amphiphiles containing higher generation dendrons. Despite their substantial structural differences with the natural ligands for the CD1d receptor, the glycodendron-lipid hybrids were capable of stimulating invariant natural killer T (iNKT) cells, a class of innate-like T cells that recognize lipid and glycolipid antigens presented by CD1d and that are implicated in a wide range of diseases and conditions including but not limited to infectious diseases, diabetes and cancer.


Assuntos
Dendrímeros , Galactose/imunologia , Lipídeos/imunologia , Células T Matadoras Naturais/efeitos dos fármacos , Animais , Linhagem Celular , Camundongos , Estrutura Molecular
13.
J Mater Chem B ; 4(28): 4872-4883, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263146

RESUMO

The development of new approaches to antibacterial surfaces is of growing interest to combat the spread of harmful bacterial infections. Relative to polyammoniums, polyphosphoniums can exhibit enhanced chemical and thermal stability, but have not yet been widely explored for the preparation of antibacterial surfaces. In this work, polyphosphoniums of varying chain lengths were synthesized by reversible addition-fragmentation chain-transfer polymerization of 4-vinylbenzyl derivatives of triethyl, tributyl, and trioctylphosphonium. These polyphosphoniums were then incorporated into semi-interpenetrating networks (SIPNs) based on tetra(ethylene glycol) diacrylate (TEGDA) via a UV light-initiated curing process. Measurements of cure percentage, gel content, water contact angle, and surface charge density suggested that all polyphosphoniums were well integrated into the network with the exception of one formulation. The results also suggested that the triethylphosphonium system tended to undergo surface reversion. Even at relatively low loadings of 0.1 to 10 wt% of polyphosphonium, the surfaces exhibited high accessible surface charge. Antibacterial testing revealed high activity against S. aureus for the triethyl and tributylphosphonium SIPNs and lower activity for the trioctyl systems. On the other hand, antibacterial activity against E. coli increased with increasing alkyl chain length. This can likely be attributed to differences in the compositions of the membranes of Gram-positive versus Gram-negative bacteria. The results also indicated that while killed bacteria tended to adsorb to the surface of the triethylphosphonium system, the more hydrophobic surfaces were more effective at preventing bacterial adsorption.

14.
Chem Sci ; 7(1): 575-582, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28791107

RESUMO

The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In this work, the control of both analyte and cell positioning on a plasmonic platform is enabled using nanofabrication methods involving patterning of fluorocarbon (FC) polymer (C4F8) thin films on a plasmonic platform fabricated by nanosphere lithography (NSL). This provides the possibility to probe biomolecules of interest in the vicinity of cells using plasmon-mediated surface enhanced spectroscopies. In this context, we demonstrate the surface enhanced biosensing of glycan expression in different cell lines by surface enhanced Raman spectroscopy (SERS) on these plasmonic platforms functionalized with 4-mercaptophenylboronic acid (4-MPBA) as the Raman reporter. These cell lines include human embryonic kidney (HEK 293), C2C12 mouse myoblasts, and HeLa (Henrietta Lacks) cervical cancer cells. A distinct glycan expression is observed for cancer cells compared to other cell lines by confocal SERS mapping. This suggests the potential application of these versatile SERS platforms for differentiating cancerous from non-cancerous cells.

15.
Biomaterials ; 35(10): 3435-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424208

RESUMO

RNAi can specifically regulate gene expression, but efficient delivery of siRNA in vivo is difficult while it has been shown that modified carbon nanotubes (CNT) protect siRNA, facilitate entry into cells and enhance transdermal drugs delivery. Single-walled carbon nanotubes (SWCNT) were functionalized non-covalently with succinated polyethyleimine (PEI-SA). In this study, the water soluble CNT, PEI-SA/CNT (IS/C) were isolated and characterized, the gene silencing induced by IS/C/siRNA complexes was achieved in vitro in B16-F10 cells. In vivo delivery was topically applied to shaved mouse skin, as well as topically to a C57BL/6 mice melanoma model. We found significant uptake of Cy3-labeled siRNA specific to Braf (siBraf) and gene silencing in the tumor tissue. Treatment with IS/C/siBraf resulted in attenuation of tumor growth over a 25-day period. This new delivery method has provided a new possibility for future siRNA delivery and therapy, which providing insight for the potential application and development of CNT-based siRNA delivery.


Assuntos
Melanoma Experimental/tratamento farmacológico , Nanotubos de Carbono , RNA Interferente Pequeno/administração & dosagem , Animais , Inativação Gênica , Melanoma Experimental/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/uso terapêutico
16.
Braz. j. pharm. sci ; 49(spe): 15-32, 2013. ilus
Artigo em Inglês | LILACS | ID: lil-686583

RESUMO

A wide variety of nanomaterials have demonstrated promise in medical applications such as drug delivery and imaging. In these applications, the surface chemistry of the materials is critical as it plays an important role in determining the toxicity and biodistribution behavior of the material. We review here the functionalization of nanomaterials with dendrons as an efficient method to alter the surface chemistry of the materials, introducing new properties and functions. Described here is the functionalization of superparamagnetic iron oxide nanoparticles (SPIO) with dendritic guanidines to enhance their transport into cells for magnetic resonance imaging applications. The introduction of dendrons bearing peripheral hydroxyls, amines, guanidines, carbohydrates and Gd(III) chelates to polymer vesicles (polymersomes) is also described. These dendritic moieties allow for modulation of toxicity, cell uptake, protein binding, and contrast agent efficiency, while at the same time allowing the stabilities of the polymersomes to be maintained. Thus, this approach holds promise for the development of a wide range of multifunctional materials for pharmaceutical applications.


Uma grande variedade de nanomateriais tem demonstrado aplicações médicas promissoras, tais como liberação de fármacos e em imagens. Nestas aplicações, a superfície química dos materiais é crítica, uma vez que exerce papel importante na determinação da toxicidade e comportamento de biodistribuição do material. Aqui, nós revisamos a funcionalização de nanomateriais, como dendrons, como método eficiente de alterar a superfície química destes compostos, introduzindo novas propriedades e funções. Descritos aqui estão nanopartículas superparamagnéticas de óxido de ferro (do inglês, SPIO), com guanidinas dendríticas para aumentar seu transporte para o interior das células, úteis em imagens de ressonância magnética. A introdução de dendrons contendo hidroxilas, aminas, guanidinas, carboidratos e quelatos de Gd(III) periféricos em vesículas poliméricas (polymersomes) também está descrita. Esses grupos dendríticos permitem a modulação de toxicidade, captura celular, ligação à proteína e eficiência como agente de contraste, enquanto que, ao mesmo tempo, permitem a manutenção da estabilidade das vesículas poliméricas. Assim, essa abordagem é promissora para o desenvolvimento de grande variedade de materiais multifuncionais para aplicações farmacêuticas.


Assuntos
Nanoestruturas/análise , Dendrímeros/classificação , Polímeros , Nanopartículas de Magnetita/classificação
17.
Langmuir ; 27(24): 14820-7, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22060118

RESUMO

The use of a hyperthermal hydrogen induced cross-linking process to prepare laminates comprising polypropylene, poly(isobutylene-co-isoprene), and poly(vinyl acetate) is described. In this new, milder alternative to conventional plasma techniques, neutral molecular hydrogen projectiles were used to create carbon radicals on impacted surfaces by collision-induced dissociation of C-H bonds, and this process was used to cross-link polymers on a polypropylene surface. It was demonstrated that multiple layers of cross-linked materials could be added, creating polymer laminates with each layer introducing new functionalities and properties. In particular, the present work shows that the process is largely nondestructive toward ester functionalities. First, the esters were grafted to become nonleachable. Then, the esters were subsequently hydrolyzed to convert the surface from hydrophobic to hydrophilic. Afterward, the esters could be recovered by simple esterification demonstrating that further chemical transformations were possible.


Assuntos
Butadienos/química , Físico-Química , Ésteres/química , Hemiterpenos/química , Hidrogênio/química , Pentanos/química , Polienos/química , Polímeros/química , Polipropilenos/química , Polivinil/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
18.
ACS Appl Mater Interfaces ; 3(5): 1740-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21491963

RESUMO

The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.


Assuntos
Adsorção , Adesão Celular , Materiais Revestidos Biocompatíveis/química , Hidrogênio/química , Polietilenoglicóis/química , Proteínas/química , Animais , Linhagem Celular , Fibroblastos/fisiologia , Camundongos , Silício/química , Propriedades de Superfície
19.
J Nanopart Res ; 12(5): 1599-1608, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-22328862

RESUMO

The imaging of molecular markers associated with disease offers the possibility for earlier detection and improved treatment monitoring. Receptors for gastrin-releasing peptide are overexpressed on prostate cancer cells offering a promising imaging target, and analogs of bombesin, an amphibian tetradecapeptide have been previously demonstrated to target these receptors. Therefore, the pan-bombesin analog [ß-Ala11, Phe13, Nle14]bombesin-(7-14) was conjugated through a linker to dye-functionalized superparamagnetic iron oxide nanoparticles for the development of a new potential magnetic resonance imaging probe. The peptide was conjugated via click chemistry, demonstrating a complementary alternative methodology to conventional peptide-nanoparticle conjugation strategies. The peptide-functionalized nanoparticles were then demonstrated to be selectively taken up by PC-3 prostate cancer cells relative to unfunctionalized nanoparticles and this uptake was inhibited by the presence of free peptide, confirming the specificity of the interaction. This study suggests that these nanoparticles have the potential to serve as magnetic resonance imaging probes for the detection of prostate cancer.

20.
Bioconjug Chem ; 19(12): 2375-84, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19053308

RESUMO

Magnetic resonance imaging (MRI) is a powerful tool for the diagnosis of disease and the study of biological processes such as cancer metastasis and inflammation. Superparamagnetic iron oxide (SPIO) nanoparticles have been shown to be effective contrast agents for labeling cells to provide high sensitivity in MRI, but this sensitivity depends on the ability to label cells with sufficient quantities of SPIO, which can be challenging for nonphagocytic cells such as cancer cells. To address this issue, a novel cell-penetrating polyester dendron with peripheral guanidines was developed and conjugated to the surface of SPIO. The functionalized nanoparticles were characterized by transmission electron microscopy, infrared spectroscopy, and dynamic light scattering, and it was found that the surface functionalization reaction proceeded to completion and did not have any adverse effects on the SPIO. In GL261 mouse glioma cells, the dendritic guanidine exhibited remarkably similar cell-penetrating capabilities to the HIV-Tat(47-57) peptide for the transport of fluorescein, and when conjugated to SPIO, it provided significantly enhanced uptake in comparison with nanoparticles having no dendron or dendrons with hydroxyl or amine peripheries. This uptake led to substantial decreases in the transverse relaxation time (T(2)) of labeled cells relative to control cells. While the nanoparticles functionalized with dendritic guanidines exhibited somewhat greater toxicity than those functionalized with dendrons having hydroxyl or amine peripheries, they were still relatively nontoxic at the low concentrations required for labeling.


Assuntos
Dendrímeros/química , Compostos Férricos/química , Compostos Férricos/metabolismo , Guanidina/química , Magnetismo , Nanopartículas/química , Sequência de Aminoácidos , Animais , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/toxicidade , Imageamento por Ressonância Magnética , Camundongos , Dados de Sequência Molecular , Nanopartículas/toxicidade , Peptídeos/química , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA