Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 237(1): 60-77, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251512

RESUMO

The rate with which crop yields per hectare increase each year is plateauing at the same time that human population growth and other factors increase food demand. Increasing yield potential ( Y p ) of crops is vital to address these challenges. In this review, we explore a component of Y p that has yet to be optimised - that being improvements in the efficiency with which light energy is converted into biomass ( ε c ) via modifications to CO2 fixed per unit quantum of light (α), efficiency of respiratory ATP production ( ε prod ) and efficiency of ATP use ( ε use ). For α, targets include changes in photoprotective machinery, ribulose bisphosphate carboxylase/oxygenase kinetics and photorespiratory pathways. There is also potential for ε prod to be increased via targeted changes to the expression of the alternative oxidase and mitochondrial uncoupling pathways. Similarly, there are possibilities to improve ε use via changes to the ATP costs of phloem loading, nutrient uptake, futile cycles and/or protein/membrane turnover. Recently developed high-throughput measurements of respiration can serve as a proxy for the cumulative energy cost of these processes. There are thus exciting opportunities to use our growing knowledge of factors influencing the efficiency of photosynthesis and respiration to create a step-change in yield potential of globally important crops.


Assuntos
Dióxido de Carbono , Produtos Agrícolas , Citocromo P-450 CYP2B1 , Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Produtos Agrícolas/fisiologia , Citocromo P-450 CYP2B1/metabolismo , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo
2.
Biology (Basel) ; 11(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36009788

RESUMO

Plant-derived pharmacological agents have been used extensively to dissect the structure-function relationships of mammalian GABA receptors and ion channels. Picrotoxin is a non-competitive antagonist of mammalian GABAA receptors. Here, we report that picrotoxin inhibits the anion (malate) efflux mediated by wheat (Triticum aestivum) ALMT1 but has no effect on GABA transport. The EC50 for inhibition was 0.14 nM and 0.18 nM when the ALMTs were expressed in tobacco BY2 cells and in Xenopus oocytes, respectively. Patch clamping of the oocyte plasma membrane expressing wheat ALMT1 showed that picrotoxin inhibited malate currents from both sides of the membrane. These results demonstrate that picrotoxin inhibits anion efflux effectively and can be used as a new inhibitor to study the ion fluxes mediated by ALMT proteins that allow either GABA or anion transport.

3.
Nat Commun ; 12(1): 1952, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782393

RESUMO

The non-protein amino acid γ-aminobutyric acid (GABA) has been proposed to be an ancient messenger for cellular communication conserved across biological kingdoms. GABA has well-defined signalling roles in animals; however, whilst GABA accumulates in plants under stress it has not been determined if, how, where and when GABA acts as an endogenous plant signalling molecule. Here, we establish endogenous GABA as a bona fide plant signal, acting via a mechanism not found in animals. Using Arabidopsis thaliana, we show guard cell GABA production is necessary and sufficient to reduce stomatal opening and transpirational water loss, which improves water use efficiency and drought tolerance, via negative regulation of a stomatal guard cell tonoplast-localised anion transporter. We find GABA modulation of stomata occurs in multiple plants, including dicot and monocot crops. This study highlights a role for GABA metabolism in fine tuning physiology and opens alternative avenues for improving plant stress resilience.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Canais de Cloreto/genética , Glutamato Descarboxilase/genética , Estômatos de Plantas/metabolismo , Transpiração Vegetal/genética , Água/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Adaptação Fisiológica/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cloreto/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hordeum/genética , Hordeum/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Transpiração Vegetal/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Glycine max/genética , Glycine max/metabolismo , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Vicia faba/genética , Vicia faba/metabolismo
4.
Plant Cell Environ ; 43(10): 2443-2459, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32666573

RESUMO

Malate exudation through wheat (Triticum aestivum L) aluminium-activated malate transporter 1 (TaALMT1) confers Al3+ tolerance at low pH, but is also activated by alkaline pH, and is regulated by and facilitates significant transport of gamma-aminobutyric acid (GABA, a zwitterionic buffer). Therefore, TaALMT1 may facilitate acidification of an alkaline rhizosphere by promoting exudation of both malate and GABA. Here, the performance of wheat near isogenic lines ET8 (Al+3 -tolerant, high TaALMT1 expression) and ES8 (Al+3 -sensitive, low TaALMT1 expression) are compared. Root growth (at 5 weeks) was higher for ET8 than ES8 at pH 9. ET8 roots exuded more malate and GABA at high pH and acidified the rhizosphere more rapidly. GABA and malate exudation was enhanced at high pH by the addition of aluminate in both ET8 and transgenic barley expressing TaALMT1. Xenopus laevis oocytes expressing TaALMT1 acidified an alkaline media more rapidly than controls corresponding to higher GABA efflux. TaALMT1 expression did not change under alkaline conditions but key genes involved in GABA turnover changed in accordance with a high rate of GABA synthesis. We propose that TaALMT1 plays a role in alkaline tolerance by exuding malate and GABA, possibly coupled to proton efflux.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Malatos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Geneticamente Modificados , Clorofila/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Hordeum , Concentração de Íons de Hidrogênio , Oócitos , Transportadores de Ânions Orgânicos/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Rizosfera , Plântula/metabolismo , Plântula/fisiologia , Estresse Fisiológico , Triticum/fisiologia , Xenopus
5.
J Plant Physiol ; 246-247: 153113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32044673

RESUMO

Grapevine (Vitis vinifera L.) is a valuable crop for human consumption and wine production, and is prone to suffering from salinity stress in arid regions or when exposed to low quality irrigation water. A previous study identified a quantitative trait locus (QTL) NaE, containing six High-affinity Potassium Transporter 1 genes, that was associated with shoot Na+ exclusion in grapevine. While HKT1;1 was predicted to be the most likely gene within this QTL to encode for this important salinity tolerance sub-trait, four other HKTs within the QTL remained uncharacterised; VviHKT1;2 encodes a truncated transcript unlikely to form a functional transporter. In this study, two allelic variants for each of VviHKT1;6, VviHKT1;7 and VviHKT1;8 from the heterozygous grapevine variety Cabernet Sauvignon were functionally characterised. Using the Xenopus laevis oocyte heterologous expression system, as well as transient expression in tobacco leaves, we found that the VviHKT1;6 and VviHKT1;7 alleles encoded plasma membrane localised proteins that facilitated significant non-rectifying Na+ transport. Conversely, proteins encoded by the VviHKT1;8 alleles were inwardly-rectifying, weak Na+ transporters that localised to intracellular organelles. Mining of previous RNA-seq gene expression data suggested that VviHKT1;6-8 are weakly expressed in grapevine roots, flower buds, and seeds under normal conditions and different nutrient regimes. We propose that VviHKT1;6 and VviHKT1;7 are likely to have a less significant role in grapevine leaf Na+ exclusion than VviHKT1;1, and that VviHKT1;8 is involved in endomembrane Na+ transport.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Locos de Características Quantitativas , Sódio/metabolismo , Simportadores/genética , Vitis/genética , Animais , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Oócitos , Proteínas de Plantas/metabolismo , Simportadores/metabolismo , Vitis/metabolismo , Xenopus
6.
Proc Natl Acad Sci U S A ; 116(11): 5015-5020, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804180

RESUMO

Chloroplast retrograde signaling networks are vital for chloroplast biogenesis, operation, and signaling, including excess light and drought stress signaling. To date, retrograde signaling has been considered in the context of land plant adaptation, but not regarding the origin and evolution of signaling cascades linking chloroplast function to stomatal regulation. We show that key elements of the chloroplast retrograde signaling process, the nucleotide phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) metabolism, evolved in streptophyte algae-the algal ancestors of land plants. We discover an early evolution of SAL1-PAP chloroplast retrograde signaling in stomatal regulation based on conserved gene and protein structure, function, and enzyme activity and transit peptides of SAL1s in species including flowering plants, the fern Ceratopteris richardii, and the moss Physcomitrella patens Moreover, we demonstrate that PAP regulates stomatal closure via secondary messengers and ion transport in guard cells of these diverse lineages. The origin of stomata facilitated gas exchange in the earliest land plants. Our findings suggest that the conquest of land by plants was enabled by rapid response to drought stress through the deployment of an ancestral SAL1-PAP signaling pathway, intersecting with the core abscisic acid signaling in stomatal guard cells.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Cloroplastos/metabolismo , Transdução de Sinais , Viridiplantae/fisiologia , Difosfato de Adenosina , Embriófitas/fisiologia , Peróxido de Hidrogênio/metabolismo , Transporte de Íons , Movimento , Óxido Nítrico/metabolismo , Filogenia , Estômatos de Plantas/fisiologia
7.
Plant Cell ; 30(5): 1147-1164, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618628

RESUMO

Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABAA receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA]i) in both wheat (Triticum aestivum) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA]i because TaALMT1 facilitates GABA efflux but GABA does not complex Al3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14C-GABA uptake into TaALMT1-expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1F213C) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA]i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status.


Assuntos
Alumínio/metabolismo , Malatos/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Ácido gama-Aminobutírico/metabolismo , Transporte Biológico/fisiologia , Transporte de Íons/fisiologia
8.
Elife ; 62017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28323614

RESUMO

Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3'-phosphoadenosine 5'- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1-2. PAP also inhibits wild type and abi1-1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca2+; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.


Assuntos
Ácido Abscísico/metabolismo , Difosfato de Adenosina/metabolismo , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Germinação , Estômatos de Plantas/fisiologia , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo
9.
Plant Physiol ; 169(3): 2215-29, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26378102

RESUMO

Plant cation-chloride cotransporters (CCCs) have been implicated in conferring salt tolerance. They are predicted to improve shoot salt exclusion by directly catalyzing the retrieval of sodium (Na(+)) and chloride (Cl(-)) ions from the root xylem. We investigated whether grapevine (Vitis vinifera [Vvi]) CCC has a role in salt tolerance by cloning and functionally characterizing the gene from the cultivar Cabernet Sauvignon. Amino acid sequence analysis revealed that VviCCC shares a high degree of similarity with other plant CCCs. A VviCCC-yellow fluorescent protein translational fusion protein localized to the Golgi and the trans-Golgi network and not the plasma membrane when expressed transiently in tobacco (Nicotiana benthamiana) leaves and Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. AtCCC-green fluorescent protein from Arabidopsis also localized to the Golgi and the trans-Golgi network. In Xenopus laevis oocytes, VviCCC targeted to the plasma membrane, where it catalyzed bumetanide-sensitive (36)Cl(-), (22)Na(+), and (86)Rb(+) uptake, suggesting that VviCCC (like AtCCC) belongs to the Na(+)-K(+)-2Cl(-) cotransporter class of CCCs. Expression of VviCCC in an Arabidopsis ccc knockout mutant abolished the mutant's stunted growth phenotypes and reduced shoot Cl(-) and Na(+) content to wild-type levels after growing plants in 50 mm NaCl. In grapevine roots, VviCCC transcript abundance was not regulated by Cl(-) treatment and was present at similar levels in both the root stele and cortex of three Vitis spp. genotypes that exhibit differential shoot salt exclusion. Our findings indicate that CCC function is conserved between grapevine and Arabidopsis, but neither protein is likely to directly mediate ion transfer with the xylem or have a direct role in salt tolerance.


Assuntos
Arabidopsis/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Cloreto de Sódio/metabolismo , Vitis/fisiologia , Animais , Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Cloretos/metabolismo , Complexo de Golgi/metabolismo , Transporte de Íons , Mutação , Oócitos , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Protoplastos , Tolerância ao Sal , Nicotiana/genética , Nicotiana/fisiologia , Vitis/genética , Xenopus , Xilema/genética , Xilema/fisiologia , Rede trans-Golgi/metabolismo
10.
Nat Commun ; 6: 7879, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26219411

RESUMO

The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.


Assuntos
Transportadores de Ânions Orgânicos/genética , Proteínas de Plantas/genética , Tubo Polínico/crescimento & desenvolvimento , Estresse Fisiológico/genética , Ácido gama-Aminobutírico/metabolismo , Acidose , Alumínio/metabolismo , Motivos de Aminoácidos , Animais , Arabidopsis , Bicuculina/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Hordeum , Potenciais da Membrana/genética , Microscopia Confocal , Muscimol/farmacologia , Mutagênese Sítio-Dirigida , Oócitos , Transportadores de Ânions Orgânicos/metabolismo , Técnicas de Patch-Clamp , Proteínas de Plantas/metabolismo , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/metabolismo , Transdução de Sinais , Nicotiana , Triticum , Vitis , Xenopus laevis , Ácido gama-Aminobutírico/efeitos dos fármacos
11.
J Exp Bot ; 65(9): 2415-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24668874

RESUMO

An important mechanism for Al(3+) tolerance in wheat is exudation of malate anions from the root apex through activation of malate-permeable TaALMT1 channels. Here, the effect of ethylene on Al(3+)-activated efflux of malate was investigated using Al(3+)-tolerant wheat genotype ET8, which has high expression of TaALMT1. Exposure of ET8 plants to Al(3+) enhanced ethylene evolution in root apices. Treatment with the ethylene synthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene gas suppressed Al(3+)-induced malate efflux from root apices, whereas the intracellular malate concentrations in roots were not affected. Malate efflux from root apices was enhanced in the presence of Al(3+) by two antagonists of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and 2-aminoisobutyric acid (AIB). An increase in Al accumulation in root apices was observed when treated with ACC, whereas AVG and AIB suppressed Al accumulation in root apices. Al(3+)-induced inhibition of root elongation was ameliorated by pretreatment with AIB. In addition, ethylene donor (Ethrel) also inhibited Al(3+)-induced malate efflux from tobacco cells transformed with TaALMT1. ACC and the anion-channel blocker niflumate had a similar and non-additive effect on Al-induced malate efflux from root apices. Treatment of ET8 plants with ACC enhanced expression of TaALMT1, suggesting that the inhibitory effect of ethylene on Al-induced malate efflux is unlikely to occur at the transcriptional level. These findings indicate that ethylene may behave as a negative regulator of Al(3+)-induced malate efflux by targeting TaALMT1-mediated malate efflux by an unknown mechanism.


Assuntos
Alumínio/metabolismo , Etilenos/metabolismo , Malatos/metabolismo , Nicotiana/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Triticum/metabolismo , Regulação para Baixo , Transportadores de Ânions Orgânicos/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Transformação Genética , Triticum/genética
12.
Science ; 332(6028): 434-7, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21415319

RESUMO

Elevations in cytosolic free calcium concentration ([Ca(2+)](cyt)) constitute a fundamental signal transduction mechanism in eukaryotic cells, but the molecular identity of Ca(2+) channels initiating this signal in plants is still under debate. Here, we show by pharmacology and loss-of-function mutants that in tobacco and Arabidopsis, glutamate receptor-like channels (GLRs) facilitate Ca(2+) influx across the plasma membrane, modulate apical [Ca(2+)](cyt) gradient, and consequently affect pollen tube growth and morphogenesis. Additionally, wild-type pollen tubes grown in pistils of knock-out mutants for serine-racemase (SR1) displayed growth defects consistent with a decrease in GLR activity. Our findings reveal a novel plant signaling mechanism between male gametophyte and pistil tissue similar to amino acid-mediated communication commonly observed in animal nervous systems.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Flores/metabolismo , Genes de Plantas/genética , Tubo Polínico/metabolismo , Receptores de Glutamato/genética , Serina/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Canais de Cálcio/genética , Sinalização do Cálcio , Membrana Celular/metabolismo , Citosol/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Glicina/farmacologia , Morfogênese/efeitos dos fármacos , Técnicas de Patch-Clamp , Plantas Geneticamente Modificadas , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/crescimento & desenvolvimento , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Receptores de Glutamato/metabolismo , Serina/farmacologia , Nicotiana/genética , Nicotiana/metabolismo
13.
Plant Cell ; 23(1): 240-57, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21258004

RESUMO

The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca(2+) transporters, CAX1 (Ca(2+)/H(+)-antiporter), ACA4, and ACA11 (Ca(2+)-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO(2) assimilation, and leaf growth rate; increased transcript abundance of other Ca(2+) transporter genes; altered expression of cell wall-modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca(2+)], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca(2+)] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Vacúolos/metabolismo , Antiporters/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , RNA de Plantas/genética , Análise de Célula Única
14.
Protoplasma ; 247(3-4): 215-31, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20658253

RESUMO

Calcium (Ca) is an essential nutrient for plants and animals, with key structural and signalling roles, and its deficiency in plants can result in poor biotic and abiotic stress tolerance, reduced crop quality and yield. Likewise, low Ca intake in humans has been linked to various diseases (e.g. rickets, osteoporosis, hypertension and colorectal cancer) which can threaten quality of life and have major economic costs. Biofortification of various food crops with Ca has been suggested as a good method to enhance human intake of Ca and is advocated as an economically and environmentally advantageous strategy. Efforts to enhance Ca content of crops via transgenic means have had promising results. Overall Ca content of transgenic plants has been increased but in some cases adverse affects on plant function have been observed. This suggests that a better understanding of how Ca ions (Ca(2+)) are stored and transported through plants is required to maximise the effectiveness of future approaches.


Assuntos
Cálcio/metabolismo , Plantas Comestíveis/fisiologia , Transporte Biológico , Cálcio da Dieta , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Humanos , Valor Nutritivo , Plantas Comestíveis/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA