Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 141(7): 1279-1286, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35182234

RESUMO

Mutations in the X-linked gene MAGT1 cause a Congenital Disorder of Glycosylation (CDG), with two distinct clinical phenotypes: a primary immunodeficiency (XMEN disorder) versus intellectual and developmental disability. It was previously established that MAGT1 deficiency abolishes steady-state expression of the immune response protein NKG2D (encoded by KLRK1) in lymphocytes. Here, we show that the reduced steady-state levels of NKG2D are caused by hypoglycosylation of the protein and we pinpoint the exact site that is underglycosylated in MAGT1-deficient patients. Furthermore, we challenge the possibility that supplementation with magnesium restores NKG2D levels and show that the addition of this ion does not significantly improve NKG2D steady-state expression nor does it rescue the hypoglycosylation defect in CRISPR-engineered human cell lines. Moreover, magnesium supplementation of an XMEN patient did not result in restoration of NKG2D expression on the cell surface of lymphocytes. In summary, we demonstrate that in MAGT1-deficient patients, the lack of NKG2D is caused by hypoglycosylation, further elucidating the pathophysiology of XMEN/MAGT1-CDG.


Assuntos
Proteínas de Transporte de Cátions , Síndromes de Imunodeficiência , Transtornos Linfoproliferativos , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Magnésio/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética
2.
J Cell Sci ; 134(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34734627

RESUMO

N-linked glycosylation of proteins entering the secretory pathway is an essential modification required for protein stability and function. Previously, it has been shown that there is a temporal relationship between protein folding and glycosylation, which influences the occupancy of specific glycosylation sites. Here, we used an in vitro translation system that reproduces the initial stages of secretory protein translocation, folding and glycosylation under defined redox conditions. We found that the efficiency of glycosylation of hemopexin was dependent upon a robust NADPH-dependent cytosolic reductive pathway, which could be mimicked by the addition of a membrane-impermeable reducing agent. We identified a hypoglycosylated acceptor site that is adjacent to a cysteine involved in a short-range disulfide. We show that efficient glycosylation at this site is influenced by the cytosolic reductive pathway acting on both STT3A- and STT3B-dependent glycosylation. Our results provide further insight into the important role of the endoplasmic reticulum redox conditions in glycosylation site occupancy and demonstrate a link between redox conditions in the cytosol and glycosylation efficiency.


Assuntos
Oxirredutases , Citosol , Glicosilação
3.
J Biol Chem ; 297(4): 101171, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492269

RESUMO

The yeast endoplasmic reticulum has three distinct protein translocation channels. The heterotrimeric Sec61 and Ssh1 complexes, which bind translating ribosomes, mediate cotranslational translocation of proteins targeted to the endoplasmic reticulum by the signal recognition particle (SRP) and SRP receptor targeting pathway, whereas the heptameric Sec complex has been proposed to mediate ribosome-independent post-translational translocation of proteins with less hydrophobic signal sequences that escape recognition by the SRP. However, multiple reports have proposed that the Sec complex may function cotranslationally and be involved in translocation or integration of SRP-dependent protein translocation substrates. To provide insight into these conflicting views, we induced expression of the tobacco etch virus protease to achieve rapid inactivation of the Sec complex by protease-mediated cleavage within the cytoplasmic domain of the Sec63 protein. Protein translocation assays conducted after tobacco etch virus protease induction revealed a complete block in translocation of two well-characterized substrates of the Sec complex, carboxypeptidase Y (CPY) and Gas1p, when the protease cleavage sites were located at structural domain boundaries in Sec63. However, integration of SRP-dependent membrane protein substrates was not detectably impacted. Moreover, redirecting CPY to the cotranslational pathway by increasing the hydrophobicity of the signal sequence rendered translocation of CPY insensitive to inactivation of the Sec complex. We conclude that the Sec complex is primarily responsible for the translocation of yeast secretome proteins with marginally hydrophobic signal sequences.


Assuntos
Canais de Translocação SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Domínios Proteicos , Transporte Proteico , Canais de Translocação SEC/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Mol Biol Cell ; 30(21): 2626-2638, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433728

RESUMO

Mammalian cells express two oligosaccharyltransferase complexes, STT3A and STT3B, that have distinct roles in N-linked glycosylation. The STT3A complex interacts directly with the protein translocation channel to mediate glycosylation of proteins using an N-terminal-to-C-terminal scanning mechanism. N-linked glycosylation of proteins in budding yeast has been assumed to be a cotranslational reaction. We have compared glycosylation of several glycoproteins in yeast and mammalian cells. Prosaposin, a cysteine-rich protein that contains STT3A-dependent glycosylation sites, is poorly glycosylated in yeast cells and STT3A-deficient human cells. In contrast, a protein with extreme C-terminal glycosylation sites was efficiently glycosylated in yeast by a posttranslocational mechanism. Posttranslocational glycosylation was also observed for carboxypeptidase Y-derived reporter proteins that contain closely spaced acceptor sites. A comparison of two recent protein structures indicates that the yeast OST is unable to interact with the yeast heptameric Sec complex via an evolutionarily conserved interface due to occupation of the OST binding site by the Sec63 protein. The efficiency of glycosylation in yeast is not enhanced for proteins that are translocated by the Sec61 or Ssh1 translocation channels instead of the Sec complex. We conclude that N-linked glycosylation and protein translocation are not directly coupled in yeast cells.


Assuntos
Asparagina/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicoproteínas/genética , Glicosilação , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hexosiltransferases/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Cell Biol ; 218(8): 2782-2796, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31296534

RESUMO

Human cells express two oligosaccharyltransferase complexes (STT3A and STT3B) with partially overlapping functions. The STT3A complex interacts directly with the protein translocation channel to mediate cotranslational glycosylation, while the STT3B complex can catalyze posttranslocational glycosylation. We used a quantitative glycoproteomics procedure to compare glycosylation of roughly 1,000 acceptor sites in wild type and mutant cells. Analysis of site occupancy data disclosed several new classes of STT3A-dependent acceptor sites including those with suboptimal flanking sequences and sites located within cysteine-rich protein domains. Acceptor sites located in short loops of multi-spanning membrane proteins represent a new class of STT3B-dependent site. Remarkably, the lumenal ER chaperone GRP94 was hyperglycosylated in STT3A-deficient cells, bearing glycans on five silent sites in addition to the normal glycosylation site. GRP94 was also hyperglycosylated in wild-type cells treated with ER stress inducers including thapsigargin, dithiothreitol, and NGI-1.


Assuntos
Glicoproteínas/metabolismo , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Proteômica , Glicosilação , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Humanos
6.
Proc Natl Acad Sci U S A ; 116(20): 9865-9870, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036665

RESUMO

Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases, due to impaired protein and lipid glycosylation. We identified two patients with defective serum transferrin glycosylation and mutations in the MAGT1 gene. These patients present with a phenotype that is mainly characterized by intellectual and developmental disability. MAGT1 has been described to be a subunit of the oligosaccharyltransferase (OST) complex and more specifically of the STT3B complex. However, it was also claimed that MAGT1 is a magnesium (Mg2+) transporter. So far, patients with mutations in MAGT1 were linked to a primary immunodeficiency, characterized by chronic EBV infections attributed to a Mg2+ homeostasis defect (XMEN). We compared the clinical and cellular phenotype of our two patients to that of an XMEN patient that we recently identified. All three patients have an N-glycosylation defect, as was shown by the study of different substrates, such as GLUT1 and SHBG, demonstrating that the posttranslational glycosylation carried out by the STT3B complex is dysfunctional in all three patients. Moreover, MAGT1 deficiency is associated with an enhanced expression of TUSC3, the homolog protein of MAGT1, pointing toward a compensatory mechanism. Hence, we delineate MAGT1-CDG as a disorder associated with two different clinical phenotypes caused by defects in glycosylation.


Assuntos
Proteínas de Transporte de Cátions/genética , Defeitos Congênitos da Glicosilação/genética , Adolescente , Criança , Defeitos Congênitos da Glicosilação/metabolismo , Análise Mutacional de DNA , Hexosiltransferases/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
FASEB J ; 33(6): 6801-6812, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30811219

RESUMO

Herpes simplex virus 1 (HSV-1) is a contagious neurotropic herpesvirus responsible for oral lesions and herpesviral encephalitis. The HSV-1 envelope contains N-glycosylated proteins involved in infection and that are candidate drug targets. NGI-1 is a small-molecule inhibitor of oligosaccharyltransferase (OST) complexes STT3A-OST and STT3B-OST, which catalyze cotranslational and post-translational N-glycosylation, respectively. Because host OSTs attach HSV-1 glycans, NGI-1 might have anti-HSV-1 activity. We evaluated HSV-1 function using NGI-1 and human embryonic kidney 293 knockout lines for OST isoform-specific catalytic and accessory subunits. N-glycosylation of 2 representative envelope proteins (gC and gD) was primarily dependent upon STT3A-OST, but to a large extent replaceable by STT3B-OST. Knockouts impairing STT3A- or STT3B-OST activity, by themselves, did not appreciably affect HSV-1 function (plaque-forming units, normalized to viral particles measured by unglycosylated capsid protein VP5 content). However, with cells lacking STT3B-OST activity (missing the catalytic subunit STT3B or the oxidoreductase subunits magnesium transporter 1/tumor suppressor candidate 3) and thus solely dependent upon STT3A-OST for N-glycosylation, NGI-1 treatment resulted in HSV-1 having cell type-dependent dysfunction (affecting infectivity with Vero cells much more than with the 293 lines). Ablation of post-translational N-glycosylation can therefore make HSV-1 infectivity, and possibly masking of immunogenic peptide epitopes by glycans, highly sensitive to pharmacological inhibition of cotranslational N-glycosylation.-Lu, H., Cherepanova, N. A., Gilmore, R., Contessa, J. N., Lehrman, M. A. Targeting STT3A-oligosaccharyltransferase with NGI-1 causes herpes simplex virus 1 dysfunction.


Assuntos
Benzamidas/farmacologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Hexosiltransferases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Chlorocebus aethiops , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Glicosilação , Células HEK293 , Herpes Simples/metabolismo , Herpes Simples/virologia , Humanos , Células Vero
9.
mBio ; 8(4)2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720733

RESUMO

Dengue virus (DENV) is the most common arboviral infection globally, infecting an estimated 390 million people each year. We employed a genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screen to identify host dependency factors required for DENV propagation and identified the oligosaccharyltransferase (OST) complex as an essential host factor for DENV infection. Mammalian cells express two OSTs containing either STT3A or STT3B. We found that the canonical catalytic function of the OSTs as oligosaccharyltransferases is not necessary for DENV infection, as cells expressing catalytically inactive STT3A or STT3B are able to support DENV propagation. However, the OST subunit MAGT1, which associates with STT3B, is also required for DENV propagation. MAGT1 expression requires STT3B, and a catalytically inactive STT3B also rescues MAGT1 expression, supporting the hypothesis that STT3B serves to stabilize MAGT1 in the context of DENV infection. We found that the oxidoreductase CXXC active site motif of MAGT1 was necessary for DENV propagation, as cells expressing an AXXA MAGT1 mutant were unable to support DENV infection. Interestingly, cells expressing single-cysteine CXXA or AXXC mutants of MAGT1 were able to support DENV propagation. Utilizing the engineered peroxidase APEX2, we demonstrate the close proximity between MAGT1 and NS1 or NS4B during DENV infection. These results reveal that the oxidoreductase activity of the STT3B-containing OST is necessary for DENV infection, which may guide the development of antiviral agents targeting DENV.IMPORTANCE The host oligosaccharyltransferase (OST) complexes have been identified as essential host factors for dengue virus (DENV) replication; however, their functions during DENV infection are unclear. A previous study showed that the canonical OST activity was dispensable for DENV replication, suggesting that the OST complexes serve as scaffolds for DENV replication. However, our work demonstrates that one function of the OST complex during DENV infection is to provide oxidoreductase activity via the OST subunit MAGT1. We also show that MAGT1 associates with DENV NS1 and NS4B during viral infection, suggesting that these nonstructural proteins may be targets of MAGT1 oxidoreductase activity. These results provide insight into the cell biology of DENV infection, which may guide the development of antivirals against DENV.


Assuntos
Vírus da Dengue/fisiologia , Hexosiltransferases/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Linhagem Celular , Humanos
10.
J Biol Chem ; 292(19): 8007-8018, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28286332

RESUMO

The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Cristalografia por Raios X , Citosol/metabolismo , Mutação , Peptídeos/química , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Nat Chem Biol ; 12(12): 1023-1030, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27694802

RESUMO

Asparagine (N)-linked glycosylation is a protein modification critical for glycoprotein folding, stability, and cellular localization. To identify small molecules that inhibit new targets in this biosynthetic pathway, we initiated a cell-based high-throughput screen and lead-compound-optimization campaign that delivered a cell-permeable inhibitor, NGI-1. NGI-1 targets oligosaccharyltransferase (OST), a hetero-oligomeric enzyme that exists in multiple isoforms and transfers oligosaccharides to recipient proteins. In non-small-cell lung cancer cells, NGI-1 blocks cell-surface localization and signaling of the epidermal growth factor receptor (EGFR) glycoprotein, but selectively arrests proliferation in only those cell lines that are dependent on EGFR (or fibroblast growth factor, FGFR) for survival. In these cell lines, OST inhibition causes cell-cycle arrest accompanied by induction of p21, autofluorescence, and cell morphology changes, all hallmarks of senescence. These results identify OST inhibition as a potential therapeutic approach for treating receptor-tyrosine-kinase-dependent tumors and provides a chemical probe for reversibly regulating N-linked glycosylation in mammalian cells.


Assuntos
Benzamidas/farmacologia , Senescência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hexosiltransferases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Sulfonamidas/farmacologia , Benzamidas/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Hexosiltransferases/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Proteínas de Membrana/metabolismo , Estrutura Molecular , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/química
12.
Sci Rep ; 6: 20946, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26864433

RESUMO

Asparagine linked glycosylation of proteins is an essential protein modification reaction in most eukaryotic organisms. Metazoan organisms express two oligosaccharyltransferase complexes that are composed of a catalytic subunit (STT3A or STT3B) assembled with a shared set of accessory subunits and one to two complex specific subunits. siRNA mediated knockdowns of STT3A and STT3B in HeLa cells have shown that the two OST complexes have partially non-overlapping roles in N-linked glycosylation. However, incomplete siRNA mediated depletion of STT3A or STT3B reduces the impact of OST complex loss, thereby complicating the interpretation of experimental results. Here, we have used the CRISPR/Cas9 gene editing technology to create viable HEK293 derived cells lines that are deficient for a single catalytic subunit (STT3A or STT3B) or two STT3B-specific accessory subunits (MagT1 and TUSC3). Analysis of protein glycosylation in the STT3A, STT3B and MagT1/TUSC3 null cell lines revealed that these cell lines are superior tools for investigating the in vivo role and substrate preferences of the STT3A and STT3B complexes.


Assuntos
Asparagina/metabolismo , Proteínas de Transporte de Cátions/genética , Hexosiltransferases/genética , Proteínas de Membrana/genética , Processamento de Proteína Pós-Traducional , Proteínas Supressoras de Tumor/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions/deficiência , Linhagem Celular , Engenharia Genética , Glicosilação , Células HEK293 , Células HeLa , Hexosiltransferases/deficiência , Humanos , Proteínas de Membrana/deficiência , Plasmídeos/química , Plasmídeos/metabolismo , Biossíntese de Proteínas , Especificidade por Substrato , Transfecção , Proteínas Supressoras de Tumor/deficiência
13.
Semin Cell Dev Biol ; 41: 71-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25460543

RESUMO

Asparagine linked glycosylation of proteins is an essential protein modification reaction in most eukaryotic organisms. N-linked oligosaccharides are important for protein folding and stability, biosynthetic quality control, intracellular traffic and the physiological function of many N-glycosylated proteins. In metazoan organisms, the oligosaccharyltransferase is composed of a catalytic subunit (STT3A or STT3B) and a set of accessory subunits. Duplication of the catalytic subunit gene allowed cells to evolve OST complexes that act sequentially to maximize the glycosylation efficiency of the large number of proteins that are glycosylated in metazoan organisms. We will summarize recent progress in understanding the mechanism of (a) cotranslational glycosylation by the translocation channel associated STT3A complex, (b) the role of the STT3B complex in mediating cotranslational or posttranslocational glycosylation of acceptor sites that have been skipped by the STT3A complex, and (c) the role of the oxidoreductase MagT1 in STT3B-dependent glycosylation of cysteine-proximal acceptor sites.


Assuntos
Retículo Endoplasmático/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Animais , Glicosilação , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Proteínas/genética
14.
J Cell Biol ; 206(4): 525-39, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25135935

RESUMO

Stabilization of protein tertiary structure by disulfides can interfere with glycosylation of acceptor sites (NXT/S) in nascent polypeptides. Here, we show that MagT1, an ER-localized thioredoxin homologue, is a subunit of the STT3B isoform of the oligosaccharyltransferase (OST). The lumenally oriented active site CVVC motif in MagT1 is required for glycosylation of STT3B-dependent acceptor sites including those that are closely bracketed by disulfides or contain cysteine as the internal residue (NCT/S). The MagT1- and STT3B-dependent glycosylation of cysteine-proximal acceptor sites can be reduced by eliminating cysteine residues. The predominant form of MagT1 in vivo is oxidized, which is consistent with transient formation of mixed disulfides between MagT1 and a glycoprotein substrate to facilitate access of STT3B to unmodified acceptor sites. Cotranslational N-glycosylation by the STT3A isoform of the OST, which lacks MagT1, allows efficient modification of acceptor sites in cysteine-rich protein domains before disulfide bond formation. Thus, mammalian cells use two mechanisms to achieve N-glycosylation of cysteine proximal acceptor sites.


Assuntos
Proteínas de Transporte de Cátions/genética , Glicoproteínas/química , Hexosiltransferases/genética , Proteínas de Membrana/genética , Oxirredutases/química , Motivos de Aminoácidos , Calreticulina , Linhagem Celular Tumoral , Defeitos Congênitos da Glicosilação/genética , Cisteína/química , Retículo Endoplasmático/metabolismo , Glicosilação , Células HeLa , Hemopexina/metabolismo , Humanos , Lectinas , Deficiência Intelectual Ligada ao Cromossomo X/genética , Isoformas de Proteínas , Interferência de RNA , RNA Interferente Pequeno , Proteínas Supressoras de Tumor/genética
15.
J Cell Sci ; 126(Pt 23): 5513-23, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24105266

RESUMO

Asparagine-linked glycosylation of proteins by the oligosaccharyltransferase (OST) occurs when acceptor sites or sequons (N-x≠P-T/S) on nascent polypeptides enter the lumen of the rough endoplasmic reticulum. Metazoan organisms assemble two isoforms of the OST that have different catalytic subunits (STT3A or STT3B) and partially non-overlapping cellular roles. Potential glycosylation sites move past the STT3A complex, which is associated with the translocation channel, at the protein synthesis elongation rate. Here, we investigated whether close spacing between acceptor sites in a nascent protein promotes site skipping by the STT3A complex. Biosynthetic analysis of four human glycoproteins revealed that closely spaced sites are efficiently glycosylated by an STT3B-independent process unless the sequons contain non-optimal sequence features, including extreme close spacing between sequons (e.g. NxTNxT) or the presence of paired NxS sequons (e.g. NxSANxS). Many, but not all, glycosylation sites that are skipped by the STT3A complex can be glycosylated by the STT3B complex. Analysis of a murine glycoprotein database revealed that closely spaced sequons are surprisingly common, and are enriched for paired NxT sites when the gap between sequons is less than three residues.


Assuntos
Glicoproteínas/metabolismo , Haptoglobinas/metabolismo , Hemopexina/metabolismo , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos , Animais , Retículo Endoplasmático/metabolismo , Expressão Gênica , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Haptoglobinas/química , Haptoglobinas/genética , Células HeLa , Hemopexina/química , Hemopexina/genética , Hexosiltransferases/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular
16.
J Cell Biol ; 201(1): 81-95, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23530066

RESUMO

Metazoan organisms assemble two isoforms of the oligosaccharyltransferase (OST) that have different catalytic subunits (STT3A or STT3B) and partially nonoverlapping roles in asparagine-linked glycosylation. The STT3A isoform of the OST is primarily responsible for co-translational glycosylation of the nascent polypeptide as it enters the lumen of the endoplasmic reticulum. The C-terminal 65-75 residues of a glycoprotein will not contact the translocation channel-associated STT3A isoform of the OST complex before chain termination. Biosynthetic pulse labeling of five human glycoproteins showed that extreme C-terminal glycosylation sites were modified by an STT3B-dependent posttranslocational mechanism. The boundary for STT3B-dependent glycosylation of C-terminal sites was determined to fall between 50 and 55 residues from the C terminus of a protein. C-terminal NXT sites were glycosylated more rapidly and efficiently than C-terminal NXS sites. Bioinformatics analysis of glycopeptide databases from metazoan organisms revealed a lower density of C-terminal acceptor sites in glycoproteins because of reduced positive selection of NXT sites and negative selection of NXS sites.


Assuntos
Glicoproteínas/metabolismo , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Bases de Dados de Proteínas , Glicoproteínas/genética , Glicosilação , Células HeLa , Hexosiltransferases/genética , Humanos , Proteínas de Membrana/genética , Estrutura Terciária de Proteína
17.
Trends Biochem Sci ; 37(8): 303-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22748693

RESUMO

Integration of a protein into the endoplasmic reticulum (ER) membrane occurs through a series of multistep reactions that include targeting of ribosome-nascent polypeptide complexes to the ER, attachment of the ribosome to the protein translocation channel, lateral partitioning of α-helical transmembrane spans into the lipid bilayer, and folding of the lumenal, cytosolic and membrane-embedded domains of the protein. However, the molecular mechanisms and kinetics of these steps are still not entirely clear. To obtain a better understanding of the mechanism of membrane protein integration, we propose that it will be important to utilize in vivo experiments to examine the kinetics of membrane protein integration and in vitro experiments to characterize interactions between nascent membrane proteins, protein translocation factors and molecular chaperones.


Assuntos
Retículo Endoplasmático Rugoso/química , Proteínas de Membrana/química , Estrutura Secundária de Proteína , RNA Fúngico/química , Citosol/química , Retículo Endoplasmático Rugoso/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Biossíntese de Proteínas , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , RNA Fúngico/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/química , Ribossomos/genética , Canais de Translocação SEC , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
18.
J Neurosci ; 32(25): 8633-48, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22723704

RESUMO

Presenilins 1 and 2 (PS1 and PS2) are the catalytic subunits of the γ-secretase complex, and genes encoding mutant PS1 and PS2 variants cause familial forms of Alzheimer's disease. Lee et al. (2010) recently reported that loss of PS1 activity lead to impairments in autophagosomal function as a consequence of lysosomal alkalinization, caused by failed maturation of the proton translocating V0a1 subunit of the vacuolar (H+)-ATPase and targeting to the lysosome. We have reexamined these issues in mammalian cells and in brains of mice lacking PS (PScdko) and have been unable to find evidence that the turnover of autophagic substrates, vesicle pH, V0a1 maturation, or lysosome function is altered compared with wild-type counterparts. Collectively, our studies fail to document a role for presenilins in regulating cellular autophagosomal function. On the other hand, our transcriptome studies of PScdko mouse brains reveal, for the first time, a role for PS in regulating lysosomal biogenesis.


Assuntos
Autofagia/fisiologia , Lisossomos/metabolismo , Presenilina-1/fisiologia , Presenilina-2/fisiologia , Presenilinas/fisiologia , Animais , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Blastocisto/metabolismo , Western Blotting , Catepsina D/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Primers do DNA , Expressão Gênica/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Reação em Cadeia da Polimerase , Presenilina-1/genética , Presenilina-2/genética , Presenilinas/genética , RNA/biossíntese , RNA/genética , RNA Interferente Pequeno/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
19.
J Biol Chem ; 286(32): 28150-9, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21676880

RESUMO

N-Glycosylation of membrane proteins is critical for their proper folding, co-assembly and subsequent matriculation through the secretory pathway. Here, we examine the kinetics of N-glycan addition to type I transmembrane KCNE1 K(+) channel ß-subunits, where point mutations that prevent N-glycosylation at one consensus site give rise to disorders of the cardiac rhythm and congenital deafness. We show that KCNE1 has two distinct N-glycosylation sites: a typical co-translational site and a consensus site ∼20 residues away that unexpectedly acquires N-glycans after protein synthesis (post-translational). Mutations that ablate the co-translational site concomitantly reduce glycosylation at the post-translational site, resulting in unglycosylated KCNE1 subunits that cannot reach the cell surface with their cognate K(+) channel. This long range inhibition is highly specific for post-translational N-glycosylation because mutagenic conversion of the KCNE1 post-translational site into a co-translational site restored both monoglycosylation and anterograde trafficking. These results directly explain how a single point mutation can prevent N-glycan attachment at multiple sites, providing a new biogenic mechanism for human disease.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Células HEK293 , Células HeLa , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Mutação Puntual , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
20.
Cell ; 136(2): 272-83, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19167329

RESUMO

Asparagine-linked glycosylation of polypeptides in the lumen of the endoplasmic reticulum is catalyzed by the hetero-oligomeric oligosaccharyltransferase (OST). OST isoforms with different catalytic subunits (STT3A versus STT3B) and distinct enzymatic properties are coexpressed in mammalian cells. Using siRNA to achieve isoform-specific knockdowns, we show that the OST isoforms cooperate and act sequentially to mediate protein N-glycosylation. The STT3A OST isoform is primarily responsible for cotranslational glycosylation of the nascent polypeptide as it enters the lumen of the endoplasmic reticulum. The STT3B isoform is required for efficient cotranslational glycosylation of an acceptor site adjacent to the N-terminal signal sequence of a secreted protein. Unlike STT3A, STT3B efficiently mediates posttranslational glycosylation of a carboxyl-terminal glycosylation site in an unfolded protein. These distinct and complementary roles for the OST isoforms allow sequential scanning of polypeptides for acceptor sites to insure the maximal efficiency of N-glycosylation.


Assuntos
Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas/metabolismo , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Glicoproteínas/metabolismo , Glicosilação , Células HeLa , Hexosiltransferases/genética , Humanos , Proteínas de Membrana/genética , Modelos Moleculares , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA