Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 679741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054553

RESUMO

Treatment of inflammatory bowel disease (IBD) is challenging, with a series of available drugs each helping only a fraction of patients. Patients may face time-consuming drug trials while the disease is active, thus there is an unmet need for biomarkers and assays to predict drug effect. It is well known that the intestinal epithelium is an important factor in disease pathogenesis, exhibiting physical, biochemical and immunologic driven barrier dysfunctions. One promising test system to study effects of existing or emerging IBD treatments targeting intestinal epithelial cells (IECs) is intestinal organoids ("mini-guts"). However, the fact that healthy intestinal epithelium is in a physiologically hypoxic state has largely been neglected, and studies with intestinal organoids are mainly performed at oxygen concentration of 20%. We hypothesized that lowering the incubator oxygen level from 20% to 2% would recapitulate better the in vivo physiological environment of colonic epithelial cells and enhance the translational value of intestinal organoids as a drug testing platform. In the present study we examine the effects of the key IBD cytokines and drug targets TNF/IL17 on human colonic organoids (colonoids) under atmospheric (20%) or reduced (2%) O2. We show that colonoids derived from both healthy controls and IBD-patients are viable and responsive to IBD-relevant cytokines at 2% oxygen. Because chemokine release is one of the important immunoregulatory traits of the epithelium that may be fine-tuned by IBD-drugs, we also examined chemokine expression and release at different oxygen concentrations. We show that chemokine responses to TNF/IL17 in organoids display similarities to inflamed epithelium in IBD-patients. However, inflammation-associated genes induced by TNF/IL17 were attenuated at low oxygen concentration. We detected substantial oxygen-dependent differences in gene expression in untreated as well as TNF/IL17 treated colonoids in all donors. Further, for some of the IBD-relevant cytokines differences between colonoids from healthy controls and IBD patients were more pronounced in 2% O2 than 20% O2. Our results strongly indicate that an oxygen concentration similar to the in vivo epithelial cell environment is of essence in experimental pharmacology.

2.
Sci Rep ; 9(1): 11394, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388080

RESUMO

Iron is vital for nearly all living organisms, but during infection, not readily available to pathogens. Infectious bacteria therefore depend on specialized mechanisms to survive when iron is limited. These mechanisms make attractive targets for new drugs. Here, by genome-wide phenotypic profiling, we identify and categorize mycobacterial genes required for low iron fitness. Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), can scavenge host-sequestered iron by high-affinity iron chelators called siderophores. We take advantage of siderophore redundancy within the non-pathogenic mycobacterial model organism M. smegmatis (Msmeg), to identify genes required for siderophore dependent and independent fitness when iron is low. In addition to genes with a potential function in recognition, transport or utilization of mycobacterial siderophores, we identify novel putative low iron survival strategies that are separate from siderophore systems. We also identify the Msmeg in vitro essential gene set, and find that 96% of all growth-required Msmeg genes have a mutual ortholog in Mtb. Of these again, nearly 90% are defined as required for growth in Mtb as well. Finally, we show that a novel, putative ferric iron ABC transporter contributes to low iron fitness in Msmeg, in a siderophore independent manner.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Sideróforos/metabolismo , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Desenvolvimento de Medicamentos , Técnicas de Silenciamento de Genes , Genes Bacterianos/genética , Genes Essenciais/genética , Perfil Genético , Humanos , Ferro/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Sideróforos/antagonistas & inibidores , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
3.
J Infect Dis ; 216(12): 1550-1560, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29029171

RESUMO

Human immunodeficiency virus type 1 (HIV) infection substantially increases the risk of developing tuberculosis. There is extensive depletion of Mycobacterium tuberculosis-specific CD4+ T cells in blood during early HIV infection, but little is known about responses in the lungs at this stage. Given that mucosal organs are a principal target for HIV-mediated CD4+ T-cell destruction, we investigated M. tuberculosis-specific responses in bronchoalveolar lavage (BAL) from persons with latent M. tuberculosis infection and untreated HIV coinfection with preserved CD4+ T-cell counts. M. tuberculosis-specific CD4+ T-cell cytokine (interferon γ, tumor necrosis factor α, and interleukin 2) responses were discordant in frequency and function between BAL and blood. Responses in BAL were 15-fold lower in HIV-infected persons as compared to uninfected persons (P = .048), whereas blood responses were 2-fold lower (P = .006). However, an increase in T cells in the airways in HIV-infected persons resulted in the overall number of M. tuberculosis-specific CD4+ T cells in BAL being similar. Our study highlights the important insights gained from studying M. tuberculosis immunity at the site of disease during HIV infection.


Assuntos
Sangue/imunologia , Linfócitos T CD4-Positivos/imunologia , Coinfecção/imunologia , Infecções por HIV/imunologia , Tuberculose Latente/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Adulto , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Infecções por HIV/complicações , Humanos , Interferon gama/metabolismo , Interleucina-2/metabolismo , Tuberculose Latente/complicações , Masculino , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA