Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Pharmaceutics ; 15(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111529

RESUMO

This study aimed to develop and evaluate nicotine--stearic acid conjugate-loaded solid lipid nanoparticles (NSA-SLNs) for transdermal delivery in nicotine replacement therapy (NRT). Nicotine conjugation to stearic acid prior to SLN formulation greatly increased drug loading. SLNs loaded with a nicotine-stearic acid conjugate were characterized for size, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, and morphology. Pilot in vivo testing was carried out in New Zealand Albino rabbits. The size, PDI, and ZP of nicotine-stearic acid conjugate-loaded SLNs were 113.5 ± 0.91 nm, 0.211 ± 0.01, and -48.1 ± 5.75 mV, respectively. The entrapment efficiency of nicotine-stearic acid conjugate in SLNs was 46.45 ± 1.53%. TEM images revealed that optimized nicotine-stearic acid conjugate-loaded SLNs were uniform and roughly spherical in shape. Nicotine-stearic acid conjugate-loaded SLNs showed enhanced and sustained drug levels for up to 96 h in rabbits when compared with the control nicotine formulation in 2% HPMC gel. To conclude, the reported NSA-SLNs could be further explored as an alternative for treating smoking cessation.

2.
J Chromatogr A ; 1692: 463844, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758493

RESUMO

Naphthenic acids (NAs) are naturally occurring organic acids in petroleum and are found in waste waters generated during oil production (produced water, PW). Profiling this class of compounds is important due to flow assurance during oil exploration. Compositional analysis of PW is also relevant for waste treatment to reduce negative impacts on the environment. Here, comprehensive two-dimensional gas chromatography coupled with high-resolution mass spectrometry (GC×GC-HRMS) was applied as an ideal platform for qualitative analysis of NAs by combining the high peak capacity of the composite system with automated scripts for group-type identification based on accurate mass measurements and fragmentation patterns. To achieve high-throughput profiling of NAs in PW samples, direct-immersion solid phase microextraction (DI-SPME) was selected for extraction, derivatization and preconcentration. A fully automated DI-SPME method was developed to combine extraction, fiber rinsing and drying, and on-fiber derivatization with N-methyl-N­tert-butyldimethylsilyltrifluoroacetamide (MTBSTFA). Data processing was based on filtering scripts using the Computer Language for Identifying Chemicals (CLIC). The method successfully identified up to 94 NAs comprising carbon numbers between 6 and 18 and hydrogen deficiency values ranging from 0 to -4. The proposed method demonstrated wider extraction coverage compared to traditional liquid-liquid extraction (LLE) - a critical factor for petroleomic investigations. The method developed also enabled quantitative analysis, exhibiting detection limits of 0.5 ng L-1 and relative standard deviation (RSD) at a concentration of NAs of 30 µg L-1 ranging from 4.5 to 25.0%.


Assuntos
Microextração em Fase Sólida , Poluentes Químicos da Água , Imersão , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Carboxílicos/análise , Poluentes Químicos da Água/análise
3.
Anal Bioanal Chem ; 415(18): 4423-4434, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36840808

RESUMO

Analysis of biofluids, such as plasma, can be used to investigate occupational pesticide exposure in the agricultural industry. Considering the chemical complexity and variability of plasma samples, any protocol for pesticide analysis should achieve efficient sample cleanup to minimize matrix effects and enhance method sensitivity through analyte pre-concentration. In this work, a high-throughput method was developed for analysis of 79 pesticides, commonly used in agricultural practices, in human plasma, using biocompatible solid-phase microextraction (SPME) coupled to liquid chromatography-tandem mass spectrometry. An SPME method was developed using a biocompatible hydrophilic-lipophilic balance/polyacrylonitrile (HLB/PAN) extraction phase and demonstrated negligible matrix effects. The performance of the developed SPME method was compared to a QuEChERS -Quick, Easy, Cheap, Effective, Rugged, and Safe- method, the most common sample preparation and cleanup approach for pesticide analysis in complex matrices. Comparable accuracy and precision were achieved for both methods, with accuracy values within 70-120% and relative standard deviation < 15%. Overall, the developed SPME and QuEChERS methods extracted 79 out of 82 monitored pesticides in human plasma. The SPME protocol demonstrated higher sensitivity than the QuEChERS method and a drastic reduction of matrix effects.


Assuntos
Resíduos de Praguicidas , Praguicidas , Humanos , Praguicidas/análise , Cromatografia Líquida/métodos , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Resíduos de Praguicidas/análise , Extração em Fase Sólida/métodos
4.
J Chromatogr A ; 1651: 462335, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34174636

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are toxic and bioaccumulative compounds that are persistent in the environment due to their water and heat resistant properties. These compounds have been demonstrated to be ubiquitous in the environment, being found in water, soil, air and various biological matrices. The determination of PFAS at ultra-trace levels is thus critical to assess the extent of contamination in a particular matrix. In this work, solid phase microextraction (SPME) was evaluated as a pre-concentration technique to aid the quantitation of this class of pollutants below the EPA established advisory limits in drinking water at parts-per-trillion levels. Four model PFAS with varying physicochemical properties, namely hexafluoropropylene oxide dimer acid (GenX), perfluoro-1- butanesulfonate (PFBS), perfluoro-n-octanoic acid (PFOA) and perfluoro-1-octanesulfonate (PFOS) were studied as a proof of concept. Analysis was performed with the use of ultra-high pressure liquid chromatography-laminar flow tandem mass spectrometry (UHPLC-MS/MS). This study proposes the use of hydrophilic-lipophilic balance-weak anion-exchange/polyacrylonitrile (HLB-WAX/PAN) as a SPME coating, ideal for all model analytes. A sample volume of 1.5 mL was used for analysis, the optimized protocol including 20 min extraction, 20 min desorption and 6 min LC/MS analysis. This method achieved LOQs of 2.5 ng L- 1 (PFOS) and 1 ng L - 1 (GenX, PFBS and PFOA) with satisfactory precision and accuracy values evaluated over a period of 5 days.


Assuntos
Cromatografia Líquida , Fluorocarbonos/análise , Troca Iônica , Microextração em Fase Sólida , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Caprilatos/análise , Fluorocarbonos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação
5.
Food Chem ; 353: 129244, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765598

RESUMO

A thin film-solid phase microextraction (TF-SPME) method was developed to test for 5 individual polychlorinated n-alkanes (PCAs) from commercial cod liver oil samples. This was accomplished by preparing a novel aluminum supported, hydrophilic-lipophilic balance/polydimethylsiloxane (HLB/PDMS) TF-SPME device that enabled direct immersion extraction from fish oil. Matrix-matched calibration gave a linear range from 0.075 µg/g to 0.75 µg/g with method limits of quantitation (MLOQ) ranging from 0.07 µg/g to 0.217 µg/g in oil. Standard addition calibration was performed using other fish oils demonstrating comparable slope to the external calibration. As a proof of concept, four fish oil brands were tested for contaminants; 1,1,1,3-tetrachlorodecane, 1,2,9,10-tetrachlorodecane, 1,2,13,14-tetrachlorotetradecane, and 1,1,1,3,14,15-hexachloropentadecane were detected above the MLOQ but below the range provided by the Stockholm Convention. This method provides an effective approach for cleanup and preconcentration of PCAs from oily matrices using inexpensive, and reusable microextraction devices that limit environmental impact of the sample preparation protocol.


Assuntos
Alcanos/química , Óleo de Fígado de Bacalhau/química , Hidrocarbonetos Clorados/química , Microextração em Fase Sólida/métodos , Calibragem , Dimetilpolisiloxanos/química , Imersão
6.
J Chromatogr A ; 1626: 461333, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32797819

RESUMO

The ultra-trace determination of nicotine and its 4 major metabolites (cotinine, nornicotine, norcotinine and anabasine) from rabbit plasma was achieved by a newly developed solid phase microextraction-liquid chromatography-tandem mass spectrometry method. Extraction of the target analytes was performed with hydrophilic/lipophilic balance-polyacrylonitrile SPME fibers. Dual fiber extraction was necessary to guarantee improved recovery at parts-per-trillion levels. Liquid chromatographic analysis was achieved in a 6-min run using a C18 (1.9 µm C18, 50 mm x 2.1 mm) column with a mobile phase flow rate of 0.4 mL/min. Tandem mass spectrometry was used for detection and quantification in positive electrospray ionization (ESI+) mode for all the targeted analytes. Two stable isotope-labeled internal standards were used for signal correction and accurate quantification. The mass spectrometer with laminar flow ion flux transport, guaranteed improved signal stability, minimal contamination of the ion guide and reproducibility into the first quadrupole analyzer. The method was validated in line with the Food and Drug Administration (FDA) guidelines for bioanalytical method validation. The results met the acceptance criteria as proposed by the FDA: accuracy was tested at 0.35, 10 and 75 µg L - 1 and ranged between 98.3-112.2% for nicotine, 94.1-101.9% for cotinine, 94.7-107.0% for nornicotine, 81.1-107.2% for norcotinine and 94.3-115.2% for anabasine, with precision up to 14.2%. Stability tests indicated that all the targeted analytes were stable in the desorption solution for at least 1 week. LOQs ranged from 0.05 to 1 µg L-1. The method was successfully applied to analyze plasma samples obtained from rabbits following transdermal application of a smoking cessation formulation loaded with solid lipid nanoparticles containing a nicotine-stearic acid conjugate.


Assuntos
Nicotina/sangue , Anabasina/sangue , Anabasina/isolamento & purificação , Anabasina/normas , Animais , Cromatografia Líquida de Alta Pressão/normas , Cotinina/análogos & derivados , Cotinina/sangue , Cotinina/isolamento & purificação , Cotinina/normas , Marcação por Isótopo , Limite de Detecção , Nicotina/análogos & derivados , Nicotina/isolamento & purificação , Nicotina/metabolismo , Nicotina/normas , Coelhos , Padrões de Referência , Reprodutibilidade dos Testes , Abandono do Hábito de Fumar , Microextração em Fase Sólida , Espectrometria de Massas em Tandem/normas , Fatores de Tempo
7.
Sci Rep ; 10(1): 6724, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317684

RESUMO

An in vivo direct-immersion SPME sampling coupled to comprehensive two-dimensional gas chromatography - time-of-flight mass spectrometry (GCxGC-ToFMS) was employed to capture real-time changes in the metabolome of 'Honeycrisp' apples during ripening on the tree. This novel sampling approach was successful in acquiring a broad metabolic fingerprint, capturing unique metabolites and detecting changes in metabolic profiles associated with fruit maturation. Several metabolites and chemical classes, including volatile esters, phenylpropanoid metabolites, 1-octen-3-ol, hexanal, and (2E,4E)-2,4-hexadienal were found to be up-regulated in response to fruit maturation. For the first time, Amaryllidaceae alkaloids, metabolites with important biological activities, including anti-cancer, anti-viral, anti-parasitic, and acetylcholinesterase (AChE) inhibitory activity, were detected in apples. Considering the elimination of oxidative degradation mechanisms that adversely impact the representativeness of metabolome obtained ex vivo, and further evidence that lipoxygenase (LOX) pathway contributes to volatile production in intact fruit, in vivo DI-SPME represents an attractive approach for global plant metabolite studies.


Assuntos
Frutas/metabolismo , Malus/metabolismo , Metaboloma , Microextração em Fase Sólida/métodos , Análise Discriminante , Cromatografia Gasosa-Espectrometria de Massas , Análise dos Mínimos Quadrados , Malus/crescimento & desenvolvimento
8.
Cell Signal ; 69: 109547, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31982549

RESUMO

The chemical- and photo- toxicity of chromophore retinal on cells have long been debated. Although we recently showed that retinal and blue light exposure interrupt cellular signaling, a comprehensive study examining molecular underpinnings of this perturbation and its consequences to cellular fate is lacking. Here, we report molecular evidence for blue light excited-retinal induced oxidative damage of polyunsaturated lipid anchors in membrane-interacting signaling molecules and DNA damage in cells using live-cell imaging and in vitro experimentation. The incurred molecular damage irreversibly disrupted subcellular localization of these molecules, a crucial criterion for their signaling. We further show retinal accumulation in lipid-bilayers of cell membranes could enhance the lifetime of retinal in cells. Comparative response-signatures suggest that retinal triggers reactions upon photoexcitation similar to photodynamic therapy agents and generate reactive oxygen species in cells. Additionally, data also shows that exposing retinal-containing cells to sunlight induces substantial cytotoxicity. Collectively, our results explain a likely in vivo mechanism and reaction conditions under which bio-available retinal in physiological light conditions damages cells.


Assuntos
Luz/efeitos adversos , Retinaldeído/toxicidade , Dano ao DNA , Células HeLa , Humanos , Peroxidação de Lipídeos , Estresse Oxidativo , Processos Fotoquímicos , Espécies Reativas de Oxigênio/metabolismo
9.
Anal Chim Acta ; 1031: 83-97, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30119747

RESUMO

The present work aimed at the development of a simple and accurate direct immersion-solidphase microextraction-gas-chromatography-mass spectrometry (DI-SPME-GC-MS) method for simultaneous determination of PAHs, PCBs, and pesticide residues in edible seaweeds. As the target contaminants possess a wide range of physical-chemical properties, multivariate experimental design was used for method optimization. In particular, two different methods were optimized and validated: one that allows for simultaneous determination of all targets, and an ad hoc method for determination of hydrophobic analytes, a class that often poses a challenge for extraction from food matrices. Optimum conditions suitable for simultaneous quantitation of all targeted compounds, namely buffer at pH = 7.0, 20% acetone (v/v), 10% NaCl (w/w), 0.02% NaN3, 60 min DI extraction at 55 °C, and 20 min desorption at 270 °C, afforded limits of quantitation (LOQs) in the range of 1-30 µg kg-1, a wide linear range of 5-2000 µg kg-1, the attainment of satisfactory determination coefficients (R2˃0.99) with no significant lack of fit (p > 0.05) at the 5% level, and satisfactory accuracy and precision values. By modifying the extraction conditions to favor extraction of the most hydrophobic analytes (e.g. higher amount of organic modifier and pH, and lower salt content) lower LOQs were obtained for these compounds ranging from 0.2 to 13.3 µg kg-1. The established methods were then used for screening of commercial, edible dry seaweeds, with PCBs (≤16.0 ng g-1) and PAHs (≤15.5 ng g-1) detected in some samples. This method overcomes most challenges commonly encountered in dry sample analysis applications, and represents the first report of a DI-SPME method employing the matrix-compatible fiber for simultaneous multiclass and multiresidue analysis of seaweeds.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Resíduos de Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Alga Marinha/química , Contaminação de Alimentos/análise , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Resíduos de Praguicidas/isolamento & purificação , Bifenilos Policlorados/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Microextração em Fase Sólida , Temperatura
10.
J Sep Sci ; 41(4): 929-939, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29193803

RESUMO

In this work, a polydimethylsiloxane/divinylbenzene fiber overcoated with a layer of polydimethylsiloxane was evaluated as analytical sampling tool for the first time in human urine. Urinary polycyclic aromatic hydrocarbons with 2-6 aromatic rings were considered as target compounds. The analyte uptake in kinetic and thermodynamic regime was evaluated and compared to the performances of polydimethylsiloxane/divinylbenzene and polydimethylsiloxane fibers. The assessment of the robustness and endurance of the overcoated fiber was carried out by direct immersion solid-phase microextraction in undiluted urine performing up to 120 consecutive extractions. The overcoated fiber was then used to develop a fast and easy direct immersion solid-phase microextraction with gas chromatography and triple quadrupole mass spectrometry protocol for the quantification of the target polycyclic aromatic hydrocarbons. The attained values of accuracy and precision were 75-114% and 2-19%, respectively, while the limits of quantification ranged between 0.05 and 1 ng/L. The proposed protocol was applied to the screening of urine samples collected from smoking and nonsmoking volunteers. The successful results obtained by using the overcoated fiber create not only new alternatives for polycyclic aromatic hydrocarbon exposure assessment but also new perspectives for the application of direct immersion solid-phase microextraction to the analysis of bioclinical matrixes.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/urina , Microextração em Fase Sólida , Adulto , Cromatografia Gasosa-Espectrometria de Massas , Voluntários Saudáveis , Humanos , Adulto Jovem
11.
Anal Chem ; 89(13): 7240-7248, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28540722

RESUMO

The direct interface of microextraction technologies to mass spectrometry (MS) has unquestionably revolutionized the speed and efficacy at which complex matrices are analyzed. Solid Phase Micro Extraction-Transmission Mode (SPME-TM) is a technology conceived as an effective synergy between sample preparation and ambient ionization. Succinctly, the device consists of a mesh coated with polymeric particles that extracts analytes of interest present in a given sample matrix. This coated mesh acts as a transmission-mode substrate for Direct Analysis in Real Time (DART), allowing for rapid and efficient thermal desorption/ionization of analytes previously concentrated on the coating, and dramatically lowering the limits of detection attained by sole DART analysis. In this study, we present SPME-TM as a novel tool for the ultrafast enrichment of pesticides present in food and environmental matrices and their quantitative determination by MS via DART ionization. Limits of quantitation in the subnanogram per milliliter range can be attained, while total analysis time does not exceed 2 min per sample. In addition to target information obtained via tandem MS, retrospective studies of the same sample via high-resolution mass spectrometry (HRMS) were accomplished by thermally desorbing a different segment of the microextraction device.


Assuntos
Contaminação de Alimentos/análise , Praguicidas/análise , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Poluição Química da Água/análise , Animais , Bebidas/análise , Citrus sinensis/química , Limite de Detecção , Rios/química , Vitis/química
12.
Anal Chim Acta ; 964: 74-84, 2017 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-28351642

RESUMO

The primary goal of the present study is the inter-laboratory evaluation of a thin film microextraction (TFME) technique to be used as an alternative approach to liquid-liquid extraction (LLE). Polydimethylsiloxane/divinylbenzene (PDMS/DVB) and PDMS/DVB-carbon mesh supported membranes were used for the extraction of 23 targeted pesticides, while a thermal desorption unit (TDU) was employed to transfer these analytes to a GC/MS instrument for separation and detection. After optimization of the most critical parameters, both membranes were capable of achieving limits of detection (LOD) in the low ng L-1 range while demonstrating excellent robustness, withstanding up to 100 extractions/desorption cycles. Furthermore, limits of quantification (LOQ) between 0.025 and 0.50 µg L-1 were achieved for the 23 compounds selected from several classes of pesticides with a wide range of polarities. A wide linear range of 0.025-10.0 µg L-1 with strong correlation to response (R2 > 0.99) was attained for most of the studied analytes. Both membranes showed good accuracy and repeatability at three levels of concentration. Moreover, the method was also validated through blind split analyses of 18 surface water samples, collected within 3 months, using TFME at the University of Waterloo and LLE at Maxxam Analytics (Mississauga, ON) which is an accredited commercial analytical laboratory. Good agreement between the two methods was achieved with accuracy values ranging from 70 to 130%, for the majority of analytes in the samples collected. At the concentration levels investigated, 90% of the analytes were quantifiable by TFME, whereas only 53% of the compounds were reportable using the LLE method particularly at concentrations lower than 1 µg L-1. The comparison of TFME and LLE from several analytical aspects demonstrated that the novel TFME method gave similar accuracy to LLE, while providing additional advantages including higher sensitivity, lower sample volume, thus reduced waste production, and faster analytical throughput. Given the sensitivity, simplicity, low cost, accuracy, greenness and relatively fast procedure of TFME, it shows great potential for adoption in analytical laboratories as an alternative to LLE.

13.
Anal Chem ; 88(13): 6859-66, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27292013

RESUMO

Solid phase microextraction (SPME) on-fiber derivatization methods have facilitated the achievement of lower detection limits and targeted analysis of various substances that exhibit poor chromatographic behavior, thermal instability, or high reactivity while limiting the use of organic solvents. However, previously developed on-fiber derivatization methods have been hindered by poor loading reproducibility and standard lifetime due to derivatization reagent reactivity. In addition, this reactivity often results in these reagents demonstrating toxic effects, complicating handling and standard formulation. To address this, a reusable standard gas generating vial containing pentafluorophenyl hydrazine (PFPH) has been developed. With this development, SPME fibers can now be reproducibly loaded with derivatization reagent, from an easy to use and safe platform. Validation of the vial using C4-C9 linear aldehyde standards as target analytes demonstrated intrabatch vial reproducibility (2% relative standard deviation (RSD), n = 4), along with PFPH headspace stability over a period of 11 weeks, facilitating reduced reagent consumption due to standard longevity. In addition, reproducibility of the derivatization reaction was observed over 1 week (RSD < 9%), and the linear concentration range was evaluated using headspace extractions from aqueous aldehyde solutions (R(2) > 0.996, 10-200 ppb v/v). Finally, the PFPH-generating vial was applied to the monitoring of volatile aldehydes generated during meat spoilage, as well as an on-site application where the free and total concentration of formaldehyde was determined in car exhaust using a portable GC/MS. To the best of our knowledge, the standard gas generating vial proposed in this work is the first documented device for the long-term storage of reusable headspace standards for a reactive, toxic, and otherwise unstable derivatization reagent standard.

14.
Anal Chim Acta ; 920: 54-62, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27114223

RESUMO

The main quest for the implementation of direct SPME to complex matrices has been the development of matrix compatible coatings that provide sufficient sensitivity towards the target analytes. In this context, we present here a thorough evaluation of PDMS-overcoated fibers suitable for simultaneous extraction of different polarities analytes, while maintaining adequate matrix compatibility. For this, eleven analytes were selected, from various application classes (pesticides, industrial chemicals and pharmaceuticals) and with a wide range of log P values (ranging from 1.43 to 6). The model matrix chosen was commercial Concord grape juice, which is rich in pigments such as anthocyanins, and contains approximately 20% of sugar (w/w). Two types of PDMS, as well as other intrinsic factors associated with the PDMS-overcoated fiber fabrication are studied. The evaluation showed that the PDMS-overcoated fibers considerably slowed down the coating fouling process during direct immersion in complex matrices of high sugar content. Longevity differences could be seen between the two types of PDMS tested, with a proprietary Sylgard(®) giving superior performance because of lesser amount of reactive groups and enhanced hydrophobicity. Conversely, the thickness of the outer layer did not seem to have a significant effect on the fiber lifetime. We also demonstrate that the uniformity of the overcoated PDMS layer is paramount to the achievement of reliable data and extended fiber lifetime. Employing the optimum overcoated fiber, limits of detection (LOD) in the range of 0.2-1.3 ng/g could be achieved. Additional improvement is attainable by introducing washing of the coatings after desorption, so that any carbon build-up (fouling) left on the coating surface after thermal desorption can be removed.


Assuntos
Cromatografia Gasosa/métodos , Dimetilpolisiloxanos/química , Análise de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Praguicidas/análise , Microextração em Fase Sólida/métodos , Limite de Detecção , Praguicidas/isolamento & purificação
15.
J Chromatogr A ; 1372C: 253-259, 2014 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-25468502

RESUMO

The analysis of characteristic urinary acidic markers such as glutaric, 3-hydroxyglutaric, 2-hydroxyglutaric, adipic, suberic, sebacic, ethylmalonic, 3-hydroxyisovaleric and isobutyric acid constitutes the recommended follow-up testing procedure for glutaric acidemia type 1 (GA-1) and type 2 (GA-2). The goal of the work herein presented is the development of a fast and simple method for the quantification of these biomarkers in human urine. The proposed analytical approach is based on the use of solid phase microextraction (SPME) combined with gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS) afterward a rapid derivatization of acidic moieties by propyl chloroformate, propanol and pyridine. Trueness and precision of the proposed protocol, tested at 5, 30 and 80mgl-1, provided satisfactory values: recoveries were in the range between 72% and 116% and the relative standard deviations (RSD%) were between 0.9% and 18% (except for isobutyric acid at 5mgl-1). The LOD values achieved by the proposed method ranged between 1.0 and 473µgl-1.

16.
Anal Chim Acta ; 835: 37-45, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24952627

RESUMO

In this work, the capabilities of solid phase microextraction were exploited in a fully optimized SPME-GC-QqQ-MS analytical approach for hydrazine assay. A rapid and easy method was obtained by a simple derivatization reaction with propyl chloroformate and pyridine carried out directly in water samples, followed by automated SPME analysis in the same vial without further sample handling. The affinity of the different derivatized compounds obtained towards five commercially available SPME coatings was evaluated, in order to achieve the best extraction efficiency. GC analyses were carried out using a GC-QqQ-MS instrument in selected reaction monitoring (SRM) acquisition mode which has allowed the achievement of high specificity by selecting appropriate precursor-product ion couples improving the capability in analyte identification. The multivariate approach of experimental design was crucial in order to optimize derivatization reaction, SPME process and tandem mass spectrometry parameters. Accuracy of the proposed protocol, tested at 60, 200 and 800 ng L(-1), provided satisfactory values (114.2%, 83.6% and 98.6%, respectively), whereas precision (RSD%) at the same concentration levels were of 10.9%, 7.9% and 7.7% respectively. Limit of detection and quantification of 4.4 and 8.3 ng L(-1) were obtained. The reliable application of the proposed protocol to real drinking water samples confirmed its capability to be used as analytical tool for routine analyses.


Assuntos
Água Potável/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrazinas/análise , Microextração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Análise Multivariada
17.
J Chromatogr A ; 1338: 164-73, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24636758

RESUMO

This work proposes a new approach for the simultaneous determination of benzothiazoles, benzotriazoles and benzosulfonamides in different environmental matrices and human urine, using solid-phase microextraction coupled with gas-chromatography-triple quadrupole mass spectrometry (SPME-GC-QqQMS). The analytes object of this investigation have been classified as toxic to aquatic organisms and their presence in human urine was reported to occur as result of human exposure to contaminated environment. In this work many of the challenges related to the chemical diversity and polarity of the analytes selected were overcame conducting a multivariate optimization of the working conditions by using the approach of "Experimental design". Tests performed to assess the performances of five SPME coatings in direct immersion mode revealed the polyacrylate coating to be the most suitable for the extraction of the probe analytes. A central composite design (CCD) was employed to determine the optimal conditions for four factors affecting the solid-phase microextraction process: extraction time, extraction temperature, pH and percentage of sodium chloride. The optimal working condition determined by using Derringer's desirability function were 40min as extraction time, pH 7.1 and 6.0% of NaCl. Since the extraction temperature do not significantly affects the responses for all the analytes considered, analyses were performed at room temperature. A careful evaluation of the matrix effect for all the matrices tested was carried out. The results obtained showed that the proposed method did not significantly influenced by matrix effects in most of the cases tested, and thus allows the use of simplified calibration procedure. Satisfactory values of accuracy and precision were also obtained for all the matrices considered.


Assuntos
Benzotiazóis/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Sulfonamidas/urina , Triazóis/urina , Poluentes Químicos da Água/análise , Água/química , Calibragem , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Humanos , Microextração em Fase Sólida/instrumentação
18.
Anal Chim Acta ; 810: 17-24, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24439500

RESUMO

The work aims at developing a simple and rapid method for the quantification of dopamine (DA), serotonin (5-HT) and norepinephrine (NE) in human urine. The urinary levels of these biogenic amines can be correlated with several pathological conditions concerning heart disease, stress, neurological disorders and cancerous tumors. The proposed analytical approach is based on the use of solid phase microextraction (SPME) combined with gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS) after a fast derivatization of both aliphatic amino and phenolic moieties by propyl chloroformate. The variables influencing the derivatization reaction were reliably optimized by the multivariate approach of "Experimental design". The optimal conditions were obtained by performing derivatization with 100µL of propyl chloroformate and 100µL of pyridine. The extraction ability of five commercially available SPME fibers was evaluated in univariate mode and the best results were obtained using the polyacrylate fiber. The variables affecting the efficiency of SPME analysis were again optimized by the multivariate approach of "Experimental design" and, in particular, a central composite design (CCD) was applied. The optimal values were extraction in 45min at room temperature, desorption temperature at 300°C, no addition of NaCl. Assay of derivatized analytes was performed by using a gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS) system in selected reaction monitoring (SRM) acquisition. An evaluation of all analytical parameters demonstrates that the developed method provides satisfactory results. Indeed, very good linearities were achieved in the tested calibration range with correlation coefficient values of 0.9995, 0.9999 and 0.9997 for DA, 5-HT and NE, respectively. Accuracies and RSDs calculated for between-run and tested at concentrations of 30, 200, and 800µg L(-1) were in the range from 92.8% to 103.0%, and from 0.67 to 4.5%, respectively. Finally, the LOD values obtained can be considered very good (0.587, 0.381 and 1.23µg L(-1) for DA, 5-HT and NE, respectively).


Assuntos
Cromatografia Gasosa/métodos , Dopamina/urina , Espectrometria de Massas/métodos , Norepinefrina/urina , Serotonina/urina , Microextração em Fase Sólida/métodos , Adulto , Cromatografia Gasosa/instrumentação , Dopamina/química , Feminino , Voluntários Saudáveis , Humanos , Masculino , Espectrometria de Massas/instrumentação , Estrutura Molecular , Norepinefrina/química , Serotonina/química , Microextração em Fase Sólida/instrumentação , Adulto Jovem
19.
Anal Chim Acta ; 747: 58-66, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22986136

RESUMO

A new analytical approach is exploited in the assay of selenium speciation in selenized and not selenium enriched potatoes based on the widely available solid-phase microextraction (SPME) coupled to-GC-triple quadrupole mass spectrometry (SPME-GC-QqQ MS) method. The assay of selenomethionine (SeMet) and selenomethylselenocysteine (SeMeSeCys) in potatoes here reported provides clues to the effectiveness of SPME technique combined with gas chromatography-tandem mass spectrometry, which could be of general use. For the exploitation of the GC method, the selected analytes were converted into their N(O,S)-alkoxycarbonyl alkyl esters derivatives by direct treatment with alkyl chloroformate in aqueous extracts. The performance of five SPME fibers and three chloroformates were tested in univariate mode and the best results were obtained using the divinylbenzene/carboxen/polydimethylsiloxane fiber and propylchloroformate. The variables affecting the efficiency of SPME analysis were optimized by the multivariate approach of design of experiment (DoE) and, in particular, a central composite design (CCD) was applied. Tandem mass spectrometry in selected reaction monitoring (SRM) has allowed the elimination of matrix interferences, providing reconstructed chromatograms with well-resolved peaks and the achievement of very satisfactory detection and quantification limits. Both precision and recovery of the proposed protocol tested at concentration of 8 and 40 µg kg(-1) (dry matter), offered values ranging from 82.3 to 116.3% and from 8.5 to 13.1% for recovery and precision, respectively. The application of the method to commercial samples of selenized and not selenium enriched potatoes proved that the Se fertilization increases significantly the concentration of these bioavailable selenoamino acids.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Selenocisteína/análogos & derivados , Selenometionina/análise , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Água/química , Humanos , Limite de Detecção , Extratos Vegetais/química , Reprodutibilidade dos Testes , Projetos de Pesquisa , Selênio/metabolismo , Selenocisteína/análise , Solanum tuberosum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA