Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 13(3): 1771-1784, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319169

RESUMO

BACKGROUND: Fibrosis is defined as an excessive accumulation of extracellular matrix (ECM) components. Many organs are subjected to fibrosis including the lung, liver, heart, skin, kidney, and muscle. Muscle fibrosis occurs in response to trauma, aging, or dystrophies and impairs muscle function. Fibrosis represents a hurdle for the treatment of human muscular dystrophies. While data on the mechanisms of fibrosis have mostly been investigated in mice, dystrophic mouse models often do not recapitulate fibrosis as observed in human patients. Consequently, the cellular and molecular mechanisms that lead to fibrosis in human muscle still need to be identified. METHODS: Combining mass cytometry, transcriptome profiling, in vitro co-culture experiments, and in vivo transplantation in immunodeficient mice, we investigated the role and nature of nonmyogenic cells (fibroadipogenic progenitors, FAPs) from human fibrotic muscles of healthy individuals (FibMCT ) and individuals with oculopharyngeal muscular dystrophy (OPMD; FibMOP ), as compared with nonmyogenic cells from human nonfibrotic muscle (MCT ). RESULTS: We found that the proliferation rate of FAPs from fibrotic muscle is 3-4 times higher than those of FAPs from nonfibrotic muscle (population doubling per day: MCT 0.2 ± 0.1, FibMCT 0.7 ± 0.1, and FibMOP 0.8 ± 0.3). When cocultured with muscle cells, FAPs from fibrotic muscle impair the fusion index unlike MCT FAPs (myoblasts alone 57.3 ± 11.1%, coculture with MCT 43.1 ± 8.9%, with FibMCT 31.7 ± 8.2%, and with FibMOP 36.06 ± 10.29%). We also observed an increased proliferation of FAPs from fibrotic muscles in these co-cultures in differentiation conditions (FibMCT +17.4%, P < 0.01 and FibMOP +15.1%, P < 0.01). This effect is likely linked to the increased activation of the canonical TGFß-SMAD pathway in FAPs from fibrotic muscles evidenced by pSMAD3 immunostaining (P < 0.05). In addition to the profibrogenic TGFß pathway, we identified endothelin as a new actor implicated in the altered cross-talk between muscle cells and fibrotic FAPs, confirmed by an improvement of the fusion index in the presence of bosentan, an endothelin receptor antagonist (from 33.8 ± 10.9% to 52.9 ± 10.1%, P < 0.05). CONCLUSIONS: Our data demonstrate the key role of FAPs and their cross-talk with muscle cells through a paracrine signalling pathway in fibrosis of human skeletal muscle and identify endothelin as a new druggable target to counteract human muscle fibrosis.


Assuntos
Adipogenia , Distrofia Muscular Oculofaríngea , Animais , Endotelinas/metabolismo , Retroalimentação , Fibrose , Humanos , Camundongos , Fibras Musculares Esqueléticas , Músculo Esquelético/patologia , Distrofia Muscular Oculofaríngea/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
Mol Cell ; 74(3): 609-621.e6, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30922843

RESUMO

Adult tissue repair and regeneration require stem-progenitor cells that can self-renew and generate differentiated progeny. Skeletal muscle regenerative capacity relies on muscle satellite cells (MuSCs) and their interplay with different cell types within the niche. However, our understanding of skeletal muscle tissue cellular composition is limited. Here, using a combined approach of single-cell RNA sequencing and mass cytometry, we precisely mapped 10 different mononuclear cell types in adult mouse muscle. We also characterized gene signatures and determined key discriminating markers of each cell type. We identified two previously understudied cell populations in the interstitial compartment. One expresses the transcription factor scleraxis and generated tenocytes in vitro. The second expresses markers of smooth muscle and mesenchymal cells (SMMCs) and, while distinct from MuSCs, exhibited myogenic potential and promoted MuSC engraftment following transplantation. The blueprint presented here yields crucial insights into muscle-resident cell-type identities and can be exploited to study muscle diseases.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Fibras Musculares Esqueléticas/citologia , Células Satélites de Músculo Esquelético/citologia , Animais , Camundongos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo
3.
Nat Commun ; 9(1): 3670, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202063

RESUMO

Fibro-adipogenic progenitors (FAPs) are currently defined by their anatomical position, expression of non-specific membrane-associated proteins, and ability to adopt multiple lineages in vitro. Gene expression analysis at single-cell level reveals that FAPs undergo dynamic transitions through a spectrum of cell states that can be identified by differential expression levels of Tie2 and Vcam1. Different patterns of Vcam1-negative Tie2high or Tie2low and Tie2low/Vcam1-expressing FAPs are detected during neonatal myogenesis, response to acute injury and Duchenne Muscular Dystrophy (DMD). RNA sequencing analysis identified cell state-specific transcriptional profiles that predict functional interactions with satellite and inflammatory cells. In particular, Vcam1-expressing FAPs, which exhibit a pro-fibrotic expression profile, are transiently activated by acute injury in concomitance with the inflammatory response. Aberrant persistence of Vcam1-expressing FAPs is detected in DMD muscles or upon macrophage depletion, and is associated with muscle fibrosis, thereby revealing how disruption of inflammation-regulated FAPs dynamics leads to a pathogenic outcome.


Assuntos
Adipogenia/fisiologia , Desenvolvimento Muscular/fisiologia , Distrofia Muscular de Duchenne/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Citometria de Fluxo , Perfilação da Expressão Gênica , Inflamação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Endogâmicos mdx , Músculo Esquelético/fisiologia , Receptor TIE-2/metabolismo , Regeneração , Análise de Sequência de RNA , Molécula 1 de Adesão de Célula Vascular/metabolismo
4.
Nat Cell Biol ; 20(8): 917-927, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30050118

RESUMO

Fibro-adipogenic progenitors (FAPs) are typically activated in response to muscle injury, and establish functional interactions with inflammatory and muscle stem cells (MuSCs) to promote muscle repair. We found that denervation causes progressive accumulation of FAPs, without concomitant infiltration of macrophages and MuSC-mediated regeneration. Denervation-activated FAPs exhibited persistent STAT3 activation and secreted elevated levels of IL-6, which promoted muscle atrophy and fibrosis. FAPs with aberrant activation of STAT3-IL-6 signalling were also found in mouse models of spinal cord injury, spinal muscular atrophy, amyotrophic lateral sclerosis (ALS) and in muscles of ALS patients. Inactivation of STAT3-IL-6 signalling in FAPs effectively countered muscle atrophy and fibrosis in mouse models of acute denervation and ALS (SODG93A mice). Activation of pathogenic FAPs following loss of integrity of neuromuscular junctions further illustrates the functional versatility of FAPs in response to homeostatic perturbations and suggests their potential contribution to the pathogenesis of neuromuscular diseases.


Assuntos
Adipogenia , Esclerose Lateral Amiotrófica/metabolismo , Denervação/métodos , Interleucina-6/metabolismo , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular/metabolismo , Mioblastos Esqueléticos/metabolismo , Músculo Quadríceps/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Traumatismos da Medula Espinal/metabolismo , Adipogenia/efeitos dos fármacos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/prevenção & controle , Animais , Cardiotoxinas , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Fibrose , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/prevenção & controle , Mutação , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/patologia , Fármacos Neuromusculares/farmacologia , Músculo Quadríceps/efeitos dos fármacos , Músculo Quadríceps/inervação , Músculo Quadríceps/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Nervo Isquiático/cirurgia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/prevenção & controle , Superóxido Dismutase-1/genética
5.
J Cell Biol ; 210(5): 717-26, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26304725

RESUMO

The tumor suppressor adenomatous polyposis coli (APC) is a crucial regulator of many stem cell types. In constantly cycling stem cells of fast turnover tissues, APC loss results in the constitutive activation of a Wnt target gene program that massively increases proliferation and leads to malignant transformation. However, APC function in skeletal muscle, a tissue with a low turnover rate, has never been investigated. Here we show that conditional genetic disruption of APC in adult muscle stem cells results in the abrogation of adult muscle regenerative potential. We demonstrate that APC removal in adult muscle stem cells abolishes cell cycle entry and leads to cell death. By using double knockout strategies, we further prove that this phenotype is attributable to overactivation of ß-catenin signaling. Our results demonstrate that in muscle stem cells, APC dampens canonical Wnt signaling to allow cell cycle progression and radically diverge from previous observations concerning stem cells in actively self-renewing tissues.


Assuntos
Proteína da Polipose Adenomatosa do Colo/fisiologia , Células-Tronco Adultas/fisiologia , Apoptose/genética , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Proteína da Polipose Adenomatosa do Colo/genética , Células-Tronco Adultas/citologia , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/genética , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/citologia , Interferência de RNA , RNA Interferente Pequeno/genética , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Cicatrização/genética , beta Catenina/metabolismo
6.
Cell Cycle ; 10(14): 2355-63, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21685725

RESUMO

Upon exposure to genotoxic stress, skeletal muscle progenitors coordinate DNA repair and the activation of the differentiation program through the DNA damage-activated differentiation checkpoint, which holds the transcription of differentiation genes while the DNA is repaired. A conceptual hurdle intrinsic to this process relates to the coordination of DNA repair and muscle-specific gene transcription within specific cell cycle boundaries (cell cycle checkpoints) activated by different types of genotoxins. Here, we show that, in proliferating myoblasts, the inhibition of muscle gene transcription occurs by either a G 1- or G 2-specific differentiation checkpoint. In response to genotoxins that induce G 1 arrest, MyoD binds target genes but is functionally inactivated by a c-Abl-dependent phosphorylation. In contrast, DNA damage-activated G 2 checkpoint relies on the inability of MyoD to bind the chromatin at the G 2 phase of the cell cycle. These results indicate an intimate relationship between DNA damage-activated cell cycle checkpoints and the control of tissue-specific gene expression to allow DNA repair in myoblasts prior to the activation of the differentiation program.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Regulação da Expressão Gênica , Músculos/metabolismo , Mioblastos/efeitos dos fármacos , Animais , Antineoplásicos/toxicidade , Linhagem Celular , Cromatina/metabolismo , Dano ao DNA , Fase G1 , Fase G2 , Camundongos , Proteína MyoD/antagonistas & inibidores , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Oxidantes/toxicidade , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-abl/metabolismo
7.
Mol Med ; 17(5-6): 457-65, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21308150

RESUMO

Histone deacetylases inhibitors (HDACi) include a growing number of drugs that share the ability to inhibit the enzymatic activity of some or all the HDACs. Experimental and preclinical evidence indicates that these epigenetic drugs not only can be effective in the treatment of malignancies, inflammatory diseases and degenerative disorders, but also in the treatment of genetic diseases, such as muscular dystrophies. The ability of HDACi to counter the progression of muscular dystrophies points to HDACs as a crucial link between specific genetic mutations and downstream determinants of disease progression. It also suggests the contribution of epigenetic events to the pathogenesis of muscular dystrophies. Here we describe the experimental evidence supporting the key role of HDACs in the control of the transcriptional networks underlying the potential of dystrophic muscles either to activate compensatory regeneration or to undergo fibroadipogenic degeneration. Studies performed in mouse models of Duchenne muscular dystrophy (DMD) indicate that dystrophin deficiency leads to deregulated HDAC activity, which perturbs downstream networks and can be restored directly, by HDAC blockade, or indirectly, by reexpression of dystrophin. This evidence supports the current view that HDACi are emerging candidate drugs for pharmacological interventions in muscular dystrophies, and reveals unexpected common beneficial outcomes of pharmacological treatment or gene therapy.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/genética , Animais , Distrofina/metabolismo , Humanos , Camundongos , Distrofias Musculares/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA