Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nat Prod Res ; : 1-6, 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38143303

RESUMO

Cachrys pungens Jan ex Guss. (Apiaceae) is a perennial plant native to Italy and Northwestern Africa. This species is known for its content in furanocoumarins, and the methanolic extract obtained with maceration previously demonstrated significant phototoxicity on 375 melanoma cells. Here, in order to better explain the biological effects, the apoptotic responses on melanoma cancer cell line were verified. The aerial parts were extracted with methanol through an innovative solid-liquid extraction technology, the Naviglio extractor®, and the raw extract was tested for its photobiological properties on human melanoma C32 cells irradiated with UVA light. The in vitro antioxidant potential was assessed as well. The sample exerted a concentration-dependent photocytotoxic activity (IC50 value = 3.00 ± 0.16 µg/mL). In line with these evidences, in C32-treated cells subjected to UV irradiation, further data have reported an up-regulation of p53 and PARP, both proteins involved in apoptotic response and DNA repair.

2.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003541

RESUMO

Prostate cancer (PCa) is the second most common male cancer. Its incidence derives from the interaction between modifiable and non-modifiable factors. The progression of prostate cancer into a more aggressive phenotype is associated with chronic inflammation and increased ROS production. For their biological properties, some phytochemicals from fruits and vegetable emerge as a promise strategy for cancer progression delay. These bioactive compounds are found in the highest amounts in peels and seeds. Poncirus trifoliata (L.) Raf. (PT) has been widely used in traditional medicine and retains anti-inflammatory, anti-bacterial, and anticancer effects. The seeds of P. trifoliata were exhaustively extracted by maceration with methanol as the solvent. The cell proliferation rate was performed by MTT and flow cytometry, while the apoptosis signals were analyzed by Western blotting and TUNEL assay. P. trifoliata seed extract reduced LNCaP and PC3 cell viability and induced cell cycle arrest at the G0/G1phase and apoptosis. In addition, a reduction in the AKT/mTOR pathway has been observed together with the up-regulation of stress-activated MAPK (p38 and c-Jun N-terminal kinase). Based on the study, the anti-growth effects of PT seed extract on prostate tumor cells give indications on the potential of the phytochemical drug for the treatment of this type of cancer. However, future in-depth studies are necessary to identify which components are mainly responsible for the anti-neoplastic response.


Assuntos
Poncirus , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos , Poncirus/química , Pontos de Checagem do Ciclo Celular , Neoplasias da Próstata/metabolismo , Apoptose , Sementes/metabolismo , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Proliferação de Células , Ciclo Celular
3.
Commun Biol ; 6(1): 1008, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794132

RESUMO

Phagosome maturation is critical for immune defense, defining whether ingested material is destroyed or converted into antigens. Sec22b regulates phagosome maturation, yet how has remained unclear. Here we show Sec22b tethers endoplasmic reticulum-phagosome membrane contact sites (MCS) independently of the known tether STIM1. Sec22b knockdown increases calcium signaling, phagolysosome fusion and antigen degradation and alters phagosomal phospholipids PI(3)P, PS and PI(4)P. Levels of PI(4)P, a lysosome docking lipid, are rescued by Sec22b re-expression and by expression of the artificial tether MAPPER but not the MCS-disrupting mutant Sec22b-P33. Moreover, Sec22b co-precipitates with the PS/PI(4)P exchange protein ORP8. Wild-type, but not mutant ORP8 rescues phagosomal PI(4)P and reduces antigen degradation. Sec22b, MAPPER and ORP8 but not P33 or mutant-ORP8 restores phagolysosome fusion in knockdown cells. These findings clarify an alternative mechanism through which Sec22b controls phagosome maturation and beg a reassessment of the relative contribution of Sec22b-mediated fusion versus tethering to phagosome biology.


Assuntos
Fagocitose , Fagossomos , Fagossomos/metabolismo , Fagocitose/fisiologia , Retículo Endoplasmático/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
4.
Cell Death Discov ; 9(1): 353, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37749101

RESUMO

The G protein-coupled estrogen receptor (GPER) mediates estrogen action in different pathophysiological conditions, including cancer. GPER expression and signaling have been found to join in the progression of triple-negative breast cancer (TNBC), even though controversial data have been reported. In present study, we aimed at providing new mechanistic and biological discoveries knocking out (KO) GPER expression by CRISPR/Cas9 technology in MDA-MB-231 TNBC cells. GPER KO whole transcriptome respect to wild type (WT) MDA-MB-231 cells was determined through total RNA sequencing (RNA-Seq) and gene ontology (GO) enrichment analysis. We ascertained that anti-proliferative and pro-apoptotic gene signatures characterize GPER KO MDA-MB-231 cells. Thereafter, we determined that these cells exhibit a reduced proliferative, clonogenic and self-renewal potential along with an increased mitochondria-dependent apoptosis phenotype. In addition, we recognized that decreased cAMP levels trigger the JNK/c-Jun/p53/Noxa axis, which in turn orchestrates the pro-apoptotic effects observed in GPER KO cells. In accordance with these data, survival analyses in TNBC patients of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset indicated that high Noxa expression correlates with improved outcomes in TNBC patients. Furthermore, we demonstrated that GPER KO in TNBC cells impairs the expression and secretion of the well-acknowledged GPER target gene named CTGF, thus resulting in the inhibition of migratory effects in cancer-associated fibroblasts (CAFs). Overall, the present study provides novel mechanistic and biological insights on GPER KO in TNBC cells suggesting that GPER may be considered as a valuable target in comprehensive therapeutic approaches halting TNBC progression.

5.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373242

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive types of cancer characterized by poor patient outcomes. To date, it is believed that the major cause of its recurrence and chemoresistance is represented by the enrichment of GBM stem cells (GSCs) sustained by the abnormal activation of a number of signaling pathways. In this study, we found that in GBM cells, treatment with low toxicity doses of the γ-secretase inhibitor RO4929097 (GSI), blocking the Notch pathway activity, in combination with resveratrol (RSV) was able to reverse the basal mesenchymal phenotype to an epithelial-like phenotype, affecting invasion and stemness interplay. The mechanism was dependent on cyclin D1 and cyclin-dependent kinase (CDK4), leading to a reduction of paxillin (Pxn) phosphorylation. Consequently, we discovered the reduced interaction of Pxn with vinculin (Vcl), which, during cell migration, transmits the intracellular forces to the extracellular matrix. The exogenous expression of a constitutively active Cdk4 mutant prevented the RSV + GSI inhibitory effects in GBM cell motility/invasion and augmented the expression of stemness-specific markers, as well as the neurosphere sizes/forming abilities in untreated cells. In conclusion, we propose that Cdk4 is an important regulator of GBM stem-like phenotypes and invasive capacity, highlighting how the combined treatment of Notch inhibitors and RSV could be prospectively implemented in the novel therapeutic strategies to target Cdk4 for these aggressive brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Resveratrol/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células
6.
Int J Cancer ; 153(6): 1257-1272, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37323038

RESUMO

Adiponectin is the major adipocytes-secreted protein involved in obesity-related breast cancer growth and progression. We proved that adiponectin promotes proliferation in ERα-positive breast cancer cells, through ERα transactivation and the recruitment of LKB1 as ERα-coactivator. Here, we showed that adiponectin-mediated ERα transactivation enhances E-cadherin expression. Thus, we investigated the molecular mechanism through which ERα/LKB1 complex may modulate the expression of E-cadherin, influencing tumor growth, progression and distant metastasis. We demonstrated that adiponectin increases E-cadherin expression in ERα-positive 2D and higher extent in 3D cultures. This occurs through a direct activation of E-cadherin gene promoter by ERα/LKB1-complex. The impact of E-cadherin on ERα-positive breast cancer cell proliferation comes from the evidence that in the presence of E-cadherin siRNA the proliferative effects of adiponectin is no longer noticeable. Since E-cadherin connects cell polarity and growth, we investigated if the adiponectin-enhanced E-cadherin expression could influence the localization of proteins cooperating in cell polarity, such as LKB1 and Cdc42. Surprisingly, immunofluorescence showed that, in adiponectin-treated MCF-7 cells, LKB1 and Cdc42 mostly colocalize in the nucleus, impairing their cytosolic cooperation in maintaining cell polarity. The orthotopic implantation of MCF-7 cells revealed an enhanced E-cadherin-mediated breast cancer growth induced by adiponectin. Moreover, tail vein injection of MCF-7 cells showed a higher metastatic burden in the lungs of mice receiving adiponectin-treated cells compared to control. From these findings it emerges that adiponectin treatment enhances E-cadherin expression, alters cell polarity and stimulates ERα-positive breast cancer cell growth in vitro and in vivo, sustaining higher distant metastatic burden.


Assuntos
Adiponectina , Neoplasias , Humanos , Animais , Camundongos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Caderinas/genética
7.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240258

RESUMO

Obesity has a noteworthy role in breast tumor initiation and progression. Among the mechanisms proposed, the most validated is the development of chronic low-grade inflammation, supported by immune cell infiltration along with dysfunction in adipose tissue biology, characterized by an imbalance in adipocytokines secretion and alteration of their receptors within the tumor microenvironment. Many of these receptors belong to the seven-transmembrane receptor family, which are involved in physiological features, such as immune responses and metabolism, as well as in the development and progression of several malignancies, including breast cancer. These receptors are classified as canonical (G protein-coupled receptors, GPCRs) and atypical receptors, which fail to interact and activate G proteins. Among the atypical receptors, adiponectin receptors (AdipoRs) mediate the effect of adiponectin, the most abundant adipocytes-derived hormone, on breast cancer cell proliferation, whose serum levels are reduced in obesity. The adiponectin/AdipoRs axis is becoming increasingly important regarding its role in breast tumorigenesis and as a therapeutic target for breast cancer treatment. The objectives of this review are as follows: to point out the structural and functional differences between GPCRs and AdipoRs, and to focus on the effect of AdipoRs activation in the development and progression of obesity-dependent breast cancer.


Assuntos
Neoplasias da Mama , Receptores de Adiponectina , Humanos , Feminino , Receptores de Adiponectina/metabolismo , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Adiponectina/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Microambiente Tumoral
8.
J Transl Med ; 21(1): 232, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004031

RESUMO

BACKGROUND: The incidence of obesity, a known risk factor for several metabolic and chronic diseases, including numerous malignancies, has risen sharply in the world. Various clinical studies demonstrate that excessive Body Mass Index (BMI) may worsen the incidence, prognosis, and mortality rates of breast cancer. Thus, understanding the link tying up obesity and breast cancer onset and progression is critically important, as it can impact patients' survival and quality of life. Recently, circulating extracellular vesicle (EV) derived miRNAs have attracted much attention for their diagnostic, prognostic and therapeutic potential in oncology research. Although the potential role of EV-derived miRNAs in the early detection of breast cancer has been repeatedly mentioned, screening of miRNAs packaged within serum EVs has not yet been reported in patients with obesity. METHODS: Circulating EVs were isolated from normal weight (NW), and overweight/obese (OW/Ob) breast cancer patients and characterized by Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and protein marker expression. Evaluation of EV-associated miRNAs was conducted in a screening (RNA-seq) and a validation (qRT-PCR) cohort. Bioinformatic analysis was performed to uncover significantly enriched biological processes, molecular functions and pathways. ROC and Kaplain-Meier survival analyses were used for clinical significance. RESULTS: Comparison of serum EV-derived miRNAs from NW and OW/Ob patients detected seven differentially expressed miRNAs (let-7a-5p, miR-122-5p, miR-30d-5p, miR-126-3p, miR-27b-3p, miR-4772-3p, and miR-10a-5p) in the screening cohort. GO analysis revealed the enrichment of protein phosphorylation, intracellular signal transduction, signal transduction, and vesicle-mediated transport among the top biological processes. In addition, the target genes were significantly enriched in pathways related to PI3K/Akt, growth hormones, and insulin signalings, which are all involved in obesity-related diseases and/or breast cancer progression. In the validation cohort, qRT-PCR confirmed a significant down-regulation of EV-derived let-7a in the serum of OW/Ob breast cancer patients compared to NW patients. Let-7a levels also exhibited a negative correlation with BMI values. Importantly, decreased let-7a miRNA expression was associated with higher tumor grade and poor survival in patients with breast cancer. CONCLUSION: These results suggest that serum-EV derived miRNAs may reflect a differential profile in relation to a patient's BMI, which, once validated in larger cohorts of patients, could provide insights into novel specific biomarkers and innovative targets to prevent the progression of obesity-mediated breast cancer.


Assuntos
Neoplasias da Mama , MicroRNA Circulante , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , MicroRNA Circulante/metabolismo , Neoplasias da Mama/complicações , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Qualidade de Vida , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo
9.
J Transl Med ; 21(1): 165, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864445

RESUMO

BACKGROUND: Breast cancer is the second leading cause of death among women after lung cancer. Despite the improvement in prevention and in therapy, breast cancer still remains a threat, both for pre- and postmenopausal women, due to the development of drug resistance. To counteract that, novel agents regulating gene expression have been studied in both hematologic and solid tumors. The Histone Deacetylase (HDAC) inhibitor Valproic Acid (VA), used for epilepsy and other neuropsychiatric diseases, has been demonstrated a strong antitumoral and cytostatic activity. In this study, we tested the effects of Valproic Acid on the signaling pathways involved in breast cancer cells viability, apoptosis and in Reactive Oxygen Species (ROS) production using ER-α positive MCF-7 and triple negative MDA-MB-231 cells. METHODS: Cell proliferation assay was performed by MTT Cell cycle, ROS levels and apoptosis were analyzed by flow cytometry, protein levels were detected by Western Blotting. RESULTS: Cell treatment with Valproic Acid reduced cell proliferation and induced G0/G1 cell cycle arrest in MCF-7 and G2/M block in MDA-MB-231 cells. In addition, in both cells the drug enhanced the generation of ROS by the mitochondria. In MCF-7 treated cells, it has been observed a reduction in mitochondrial membrane potential, a down regulation of the anti-apoptotic marker Bcl-2 and an increase of Bax and Bad, leading to release of cytochrome C and PARP cleavage. Less consistent effects are recorded in MDA-MB-231 cells, in which the greater production of ROS, compared to MCF-7cells, involves an inflammatory response (activation of p-STAT3, increased levels of COX2). CONCLUSIONS: Our results have demonstrated that in MCF-7 cells the Valproic Acid is a suitable drug to arrest cell growth, to address apoptosis and mitochondrial perturbations, all factors that are important in determining cell fate and health. In a triple negative MDA-MB 231 cells, valproate directs the cells towards the inflammatory response with a sustained expression of antioxidant enzymes. Overall, the not always unequivocal data between the two cellular phenotypes indicate that further studies are needed to better define the use of the drug, also in combination with other chemotherapy, in the treatment of breast tumors.


Assuntos
Inibidores de Histona Desacetilases , Ácido Valproico , Feminino , Humanos , Ácido Valproico/farmacologia , Células MCF-7 , Espécies Reativas de Oxigênio , Ciclo Celular , Proliferação de Células , Inibidores de Histona Desacetilases/farmacologia
10.
World Neurosurg X ; 18: 100164, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36818737

RESUMO

The impact of surgery for cerebellar brain metastases in elderly population has been the object of limited studies in literature. Given the increasing burden of their chronic illnesses, the decision to recommend surgery remains difficult. All patients aged ≥65 years, who underwent surgical resection of a cerebellar brain metastasis from May 2000 and May 2021 at IRCCS National Cancer Institute "Regina Elena", were analyzed. The study cohort includes 48 patients with a mean age of 70.8 years. 7 patients belonged to the II Class according to the RPA classification, 41 to the III Class; the median GPA classification was 1.5. Median pre-operative and post-operative KPS was 60. Median Charlson Comorbidity Index (CCI) was 11; median 5-variable modified Frailty Index was 2. Overall, 14 patients (29%) presented perioperative neurologic and systemic complications. 34 patients (71%) were able to perform adjuvant therapies as RT and/or CHT after surgery. A higher CCI predicted complications occurrence (p = 0.044), while significant factors for a post-operative KPS ≥70, were i) hemispheric location of the metastasis, ii) higher pre-operative KPS, iii) RPA II classification. Median Overall Survival was 7 months. A post-operative KPS <70 (p = 0.004) and a short time interval between diagnosis of the primary tumor and cerebellar metastasis appearance, were predictive for a worse outcome (p = 0.012). Our study suggests that selected elderly patients with cerebellar metastases may benefit from microsurgery to continue their adjuvant therapies, although a high complications rate should be taken in account.

11.
Antioxidants (Basel) ; 12(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36829943

RESUMO

Interesting photobiological properties have been demonstrated for some Cachrys species, including C. libanotis L., C. sicula L., and C. pungens Jan. The present study was designed to assess the photocytotoxic activity of Prangos ferulacea Lindl. (synonym of C. ferulacea (L.) Calest.). This plant was previously considered a Cachrys species but, at present, it is part of the Prangos genus. P. ferulacea is an orophilous plant present in the eastern Mediterranean and in western Asia. Three different extraction techniques were utilized. Obtained extracts were compared both for their phytochemical content and for their photobiological properties on human melanoma cells irradiated with UVA light. The apoptotic responses, together with the antioxidant activity, were also assessed. P. ferulacea extracts were able to affect cell viability in a concentration-dependent manner, with the sample obtained through supercritical CO2 extraction showing the highest activity (IC50 = 4.91 µg/mL). This research points out the interesting content in the photoactive compounds of this species, namely furanocoumarins, and could provide a starting point for further studies aimed at finding new photosensitizing agents useful in cancer photochemotherapy.

12.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361728

RESUMO

Tumor extracellular vesicles (EVs), as endocytic vesicles able to transport nucleic acids, proteins, and metabolites in recipient cells, have been recognized fundamental mediators of cell-to-cell communication in breast cancer. The biogenesis and release of EVs are highly regulated processes and both the quantity of EVs and their molecular cargo might reflect the metabolic state of the producing cells. We recently demonstrated that the adipokine leptin, whose circulating levels correlate with adipose tissue expansion, is an inducer of EV release from breast cancer cells. Here, we show a specific proteomic signature of EVs released by MCF-7 breast cancer cells grown in the presence of leptin (Lep-EVs), in attempt to find additional molecular effectors linking obesity to breast cancer biology. An analysis of the proteomic profile of Lep-EVs by LC-MS/MS revealed a significant enrichment in biological processes, molecular functions, and cellular components mainly related to mitochondrial machineries and activity, compared to protein content of EVs from untreated breast cancer cells. Metabolic investigations, carried out to assess the autocrine effects of these vesicles on breast cancer cells, revealed that Lep-EVs were able to increase ATP levels in breast cancer cells. This result is associated with increased mitochondrial respiration evaluated by Seahorse analyzer, supporting the concept that Lep-EVs can modulate MCF-7 breast cancer cell oxidative metabolism. Moreover, taking into account the relevance of tumor immune cell crosstalk in the tumor microenvironment (TME), we analyzed the impact of these vesicles on macrophage polarization, the most abundant immune component in the breast TME. We found that tumor-derived Lep-EVs sustain the polarization of M0 macrophages, derived from the human THP-1 monocytic cells, into M2-like tumor-associated macrophages, in terms of metabolic features, phagocytic activity, and increased expression of CD206-positive population. Overall, our results indicate that leptin by inducing the release of EV-enriched in mitochondrial proteins may control the metabolism of MCF-7 breast cancer cells as well as that of macrophages. Characterization of tumor-derived EV protein cargo in an obesity-associated milieu, such as in the presence of elevated leptin levels, might allow identifying unique features and specific metabolic mechanisms useful to develop novel therapeutic approaches for treatment of breast cancer, especially in obese patients.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Proteômica , Neoplasias da Mama/metabolismo , Leptina/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Vesículas Extracelulares/metabolismo , Obesidade/metabolismo , Microambiente Tumoral
13.
J Transl Med ; 20(1): 263, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672854

RESUMO

BACKGROUND: Metabolic disorders are associated with increased incidence, aggressive phenotype and poor outcome of breast cancer (BC) patients. For instance, hyperinsulinemia is an independent risk factor for BC and the insulin/insulin receptor (IR) axis is involved in BC growth and metastasis. Of note, the anti-diabetic metformin may be considered in comprehensive therapeutic approaches in BC on the basis of its antiproliferative effects obtained in diverse pre-clinical and clinical studies. METHODS: Bioinformatics analysis were performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project. The naturally immortalized BC cell line, named BCAHC-1, as well as cancer-associated fibroblasts (CAFs) derived from BC patients were used as model systems. In order to identify further mechanisms that characterize the anticancer action of metformin in BC, we performed gene expression and promoter studies as well as western blotting experiments. Moreover, cell cycle analysis, colony and spheroid formation, actin cytoskeleton reorganization, cell migration and matrigel drops evasion assays were carried out to provide novel insights on the anticancer properties of metformin. RESULTS: We first assessed that elevated expression and activation of IR correlate with a worse prognostic outcome in estrogen receptor (ER)-positive BC. Thereafter, we established that metformin inhibits the insulin/IR-mediated activation of transduction pathways, gene changes and proliferative responses in BCAHC-1 cells. Then, we found that metformin interferes with the insulin-induced expression of the metastatic gene CXC chemokine receptor 4 (CXCR4), which we found to be associated with poor disease-free survival in BC patients exhibiting high levels of IR. Next, we ascertained that metformin prevents a motile phenotype of BCAHC-1 cells triggered by the paracrine liaison between tumor cells and CAFs upon insulin activated CXCL12/CXCR4 axis. CONCLUSIONS: Our findings provide novel mechanistic insights regarding the anti-proliferative and anti-migratory effects of metformin in both BC cells and important components of the tumor microenvironment like CAFs. Further investigations are warranted to corroborate the anticancer action of metformin on the tumor mass toward the assessment of more comprehensive strategies halting BC progression, in particular in patients exhibiting metabolic disorders and altered insulin/IR functions.


Assuntos
Neoplasias da Mama , Metformina , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Insulina/farmacologia , Insulina/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Receptores CXCR4/metabolismo , Transdução de Sinais , Microambiente Tumoral
14.
Nutrients ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684123

RESUMO

Recent and growing literature has reported that oleuropein (OLE), the main polyphenol in olive leaf extract, inhibits tumor cell proliferation and reduces the invasiveness properties of cancer cells; therefore, OLE may play a significant role in the development of new drugs for cancer treatment. These antineoplastic properties have been reported in many experimental cancer models, but the effect of OLE on seminoma cells is yet to be evaluated. In the present study, we demonstrate, for the first time, that OLE reduces cell viability in both intra- and extragonadal TCAM-2 and SEM-1 seminoma cells, respectively, in a dose-dependent manner. As shown by Western-blot analysis, OLE exposure reduced cyclin-D1 expression and upregulated p21Cip/WAF1, concomitantly affecting the upstream pathway of NF-κB, leading to the reduction of its nuclear content, thereby suggesting that OLE could modulate cell-cycle regulators by inhibiting NF-κB. Moreover, Annexin V staining revealed that OLE induced apoptosis in cancer cells and upregulated the pro-apoptotic factor BAX. Through wound-healing scratch and transmigration assays, we also demonstrated that OLE significantly reduced the migration and motility of TCAM-2 and SEM-1 cells, and downregulated the expression of TGFß-1, which is known to be the main pro-fibrotic factor involved in the acquisition of the migratory and invasive properties of cancer cells. Collectively, our results indicate that OLE reduces seminoma cell proliferation, promotes apoptosis, and counteracts cell migration and motility. Further studies are needed to explore the molecular mechanisms underlying these observed effects.


Assuntos
Seminoma , Neoplasias Testiculares , Apoptose , Proliferação de Células , Humanos , Glucosídeos Iridoides , Iridoides/farmacologia , Masculino , NF-kappa B , Olea , Extratos Vegetais , Seminoma/tratamento farmacológico , Neoplasias Testiculares/tratamento farmacológico
15.
Cancers (Basel) ; 13(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572782

RESUMO

New avenues for glioblastoma therapy are required due to the limited mortality benefit of the current treatments. The renin-angiotensin system (RAS) exhibits local actions and works as a paracrine system in different tissues and tumors, including glioma. The glioblastoma cell lines U-87 MG and T98G overexpresses Angiotensin II (Ang II)/Angiotensin II type I receptor (AGTR1) signaling, which enhances in vitro and in vivo local estrogen production through a direct up-regulation of the aromatase gene promoters p I.f and p I.4. In addition, Ang II/AGTR1 signaling transactivates estrogen receptor-α in a ligand-independent manner through mitogen-activated protein kinase (MAPK) activation. The higher aromatase mRNA expression in patients with glioblastoma was associated with the worst survival prognostic, according to The Cancer Genome Atlas (TCGA). An intrinsic immunosuppressive glioblastoma tumor milieu has been previously documented. We demonstrate how Ang II treatment in glioblastoma cells increases programmed death-ligand 1 (PD-L1) expression reversed by combined exposure to Losartan (LOS) in vitro and in vivo. Our findings highlight how LOS, in addition, antagonizes the previously documented neoangiogenetic, profibrotic, and immunosuppressive effects of Ang II and drastically inhibits its stimulatory effects on local estrogen production, sustaining glioblastoma cell growth. Thus, Losartan may represent an adjuvant pharmacological tool to be repurposed prospectively for glioblastoma treatment.

16.
Cancer Lett ; 521: 155-168, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34425186

RESUMO

Extracellular vesicles (EVs) are emerging key protagonists in intercellular communication between adipocytes and breast cancer (BC) cells. Here, we described a new mechanism by which EVs released by mature adipocytes promoted breast cancer cell malignancy "in vitro" and "in vivo". We found that adipocyte-derived EVs enhanced growth, motility and invasion, stem cell-like properties, as well as specific traits of epithelial-to-mesenchymal transition in both estrogen receptor positive and triple negative BC cells. Of note, adipocyte-derived EVs aid breast tumor cells in lung metastatic colonization after tail-vein injection in mice. These EV-mediated effects occur via the induction of HIF-1α activity, since they were abrogated by the use of the HIF-1α inhibitor KC7F2 or in cells silenced for HIF-1α expression. Moreover, using an "ex vivo" model of obese adipocytes we found that the depletion of EVs counteracted the ability of obese adipocytes to sustain pro-invasive phenotype in BC cells. Interestingly, EVs released by undifferentiated adipocytes failed to induce aggressiveness and HIF-1α expression. These findings shed new light on the role of adipocyte-derived EVs in breast cancer progression, suggesting the possibility to target HIF-1α activity to block the harmful adipocyte-tumor cell dialogue, especially in obese settings.

17.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203324

RESUMO

The antitumor activity of certain anti-inflammatory drugs is often attributed to an indirect effect based on the inhibition of COX enzymes. In the case of anti-inflammatory prodrugs, this property could be attributed to the parent molecules with mechanism other than COX inhibition, particularly through formulations capable of slowing down their metabolic conversion. In this work, a pilot docking study aimed at comparing the interaction of two prodrugs, nabumetone (NB) and its tricyclic analog 7-methoxy-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-one (MC), and their common active metabolite 6-methoxy-2-naphthylacetic acid (MNA) with the COX binding site, was carried out. Cytotoxicity, cytofluorimetry, and protein expression assays on prodrugs were also performed to assess their potential as antiproliferative agents that could help hypothesize an effective use as anticancer therapeutics. Encouraging results suggest that the studied compounds could act not only as precursors of the anti-inflammatory metabolite, but also as direct antiproliferative agents.


Assuntos
Anti-Inflamatórios não Esteroides , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase , Nabumetona , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Células MCF-7 , Nabumetona/síntese química , Nabumetona/química , Nabumetona/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia
18.
Nanomaterials (Basel) ; 11(5)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922934

RESUMO

Nanoparticles with active-targeting and stimuli-responsive behavior are a promising class of engineered materials able to recognize the site of cancer disease, targeting the drug release and limiting side effects in the healthy organs. In this work, new dual pH/redox-responsive nanoparticles with affinity for folate receptors were prepared by the combination of two amphiphilic dextran (DEX) derivatives. DEXFA conjugate was obtained by covalent coupling of the polysaccharide with folic acid (FA), whereas DEXssPEGCOOH derived from a reductive amination step of DEX was followed by condensation with polyethylene glycol 600. After self-assembling, nanoparticles with a mean size of 50 nm, able to be destabilized in acidic pH and reducing media, were obtained. Doxorubicin was loaded during the self-assembling process, and the release experiments showed the ability of the proposed system to modulate the drug release in response to different pH and redox conditions. Finally, the viability and uptake experiments on healthy (MCF-10A) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the proposed system as a new drug vector in cancer therapy.

19.
Plants (Basel) ; 10(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435579

RESUMO

Photochemotherapy is one of the most interesting current therapeutic approaches for the treatment of melanoma. Different classes of naturally occurring phytochemicals demonstrated interesting photoactive properties. The aim of this study was to evaluate the photocytotoxic potential of two Cachrys species from Southern Italy: C. sicula and C. libanotis (Apiaceae). The enriched-coumarin extracts were obtained from aerial parts through both traditional maceration and pressurized cyclic solid-liquid (PCSL) extraction using Naviglio extractor®. Qualitative and quantitative analyses of furanocoumarins were performed with GC-MS. The photocytotoxic effects were verified on C32 melanoma cells irradiated at a dose of 1.08 J/cm2. The apoptotic responses were also assessed. Moreover, phenolic content and the in vitro antioxidant potential were estimated. Xanthotoxin, bergapten, and isopimpinellin were identified. All the samples induced concentration-dependent photocytotoxic effects (IC50 ranging from 3.16 to 18.18 µg/mL). The C. libanotis sample obtained with Naviglio extractor® was the most effective one (IC50 = 3.16 ± 0.21 µg/mL), followed by C. sicula sample obtained with the same technique (IC50 = 8.83 ± 0.20 µg/mL). Both Cachrys samples obtained through PCSL induced up-regulation of apoptotic signals such as BAX (Bcl2-associated X protein) and PARP (poly ADP-ribose polymerase) cleavage. Moreover, these samples proved to be more photoactive, giving a greater upregulation of p21 protein in the presence of UVA radiation. Obtained results suggest that investigated species could be promising candidates for further investigations aimed to find new potential drugs for the photochemotherapy of skin cancer.

20.
Am J Cancer Res ; 11(12): 5933-5950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35018234

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive form of brain tumors and the hardest type of cancer to treat. Therapies targeting developmental pathways, such as Notch, eliminate neoplastic glioma cells, but their efficacy can be limited by various mechanisms. Combination regimens may represent a good opportunity for effective therapies with durable effects. We used low doses of the γ-secretase inhibitor RO4929097 (GSI), to block the Notch pathway activity, in combination with Resveratrol (RSV) and we evidenced the mechanisms of autophagy/apoptosis transition in GBM cells. Resveratrol and GSI combination results in the synergistic induction of cell death together with the block of the autophagic flux evidenced by a sustained increase of LC3-II and p62 protein content, due to the dramatic reduction of CDK4, an important regulator of lysosomal function. The ectopic overexpression of the constitutive active CDK4 mutant, greatly counteracted the RSV+GSI induced block of the autophagy. Triggering autophagy in RSV+GSI-treated cells, which have impaired lysosomal function, caused the collapse of the system and a following apoptosis. For instance, by combining the CDK4 mutant as well as the early stage autophagy inhibitor, 3-methyladenina, abolished the RSV+GSI induced caspases activation. The initiator caspases (caspases-8 and -9), effector caspase (caspase-3) and its downstream substrate PARP were induced after RSV+GSI exposure as well as the percentage of the TUNEL positive cells. Moreover, the pro-apoptotic signaling MAPK p38 was activated while the pro-survival MAPK p42/p44 signaling was inhibited. In short, we establish the role of CDK4 in the regulation of autophagy/apoptosis transition induced by RSV and GSI in GBM cells. This new synergistic therapeutic combination, increasing the accumulation of autophagosomes, may have therapeutic value for GBM patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA