Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Eur J Med Chem ; 276: 116681, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39024966

RESUMO

In our continuing effort devoted at developing agents targeting the EphA2 receptor by means of protein-protein interaction (PPI) inhibitors, we report here the design and synthesis of a new class of l-ß-homotryptophan conjugates of 3-ß-hydroxy-Δ5-cholenic acid bearing a set of arylsulfonyl substituents at the indole nitrogen atom. An extensive structure-activity relationship (SAR) analysis indicates that the presence of a bulky lipophilic moiety at the indole nitrogen is fundamental for improving potency on the EphA2 receptor, while abrogating activity on the EphB1-EphB3 receptor subtypes. A rational exploration, guided by the combined application of an experimental design on σp and π physicochemical descriptors and docking simulations, led to the discovery of UniPR1454, a 1-(4-(trifluoromethyl)phenyl)sulfonyl derivative acting as potent and competitive EphA2 antagonist able to inhibit ephrin-A1 dependent signals and to reduce proliferation of glioblastoma (U251) cell line at micromolar concentration.


Assuntos
Antineoplásicos , Proliferação de Células , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma , Indóis , Receptor EphA2 , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptor EphA2/antagonistas & inibidores , Receptor EphA2/metabolismo , Relação Estrutura-Atividade , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/farmacologia
2.
ChemMedChem ; : e202400389, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923732

RESUMO

The correlation between the CCL20/CCR6 axis and autoimmune and non-autoimmune disorders is widely recognized. Inhibition of the CCL20-dependent cell migration represents therefore a promising approach for the treatment of many diseases, such as inflammatory bowel diseases and colorectal cancer. We report herein our efforts to explore the biologically relevant chemical space around the benzofuran scaffold of MR120, a modulator of the CCL20/CCR6 axis previously discovered by our group. A functional screening allowed us to identify C4 and C5-substituted derivatives as the most effective inhibitors of the CCL20-induced chemotaxis of human peripheral blood mononuclear cells (PBMC). Moreover, selected compounds (16 e and 24 b) also proved to potently inhibit the growth of different colon cancer cell lines, with cytotoxic/cytostatic and antiproliferative activity.

3.
J Chem Inf Model ; 63(21): 6900-6911, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37910792

RESUMO

With the aim of identifying novel antagonists selective for the EphA receptor family, a combined experimental and computational approach was taken to investigate the molecular basis of the recognition between a prototypical Eph-ephrin antagonist (UniPR1447) and two representative receptors of the EphA and EphB subfamilies, namely, EphA2 and EphB2 receptors. The conformational free-energy surface (FES) of the binding state of UniPR1447 within the ligand binding domain of EphA2 and EphB2, reconstructed from molecular dynamics (MD) simulations performed on the microsecond time scale, was exploited to drive the design and synthesis of a novel antagonist selective for EphA2 over the EphB2 receptor. The availability of compounds with this pharmacological profile will help discriminate the importance of these two receptors in the insurgence and progression of cancer.


Assuntos
Receptor EphA2 , Receptor EphB2 , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Receptor EphA2/antagonistas & inibidores , Receptor EphB2/antagonistas & inibidores
4.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37895923

RESUMO

The Eph kinases are the largest receptor tyrosine kinases (RTKs) family in humans. PC3 human prostate adenocarcinoma cells are a well-established model for studying Eph-ephrin pharmacology as they naturally express a high level of EphA2, a promising target for new cancer therapies. A pharmacological approach with agonists did not show significant efficacy on tumor growth in prostate orthotopic murine models, but reduced distal metastasis formation. In order to improve the comprehension of the pharmacological targeting of Eph receptors in prostate cancer, in the present work, we investigated the efficacy of Eph antagonism both in vitro and in vivo, using UniPR1331, a small orally bioavailable Eph-ephrin interaction inhibitor. UniPR1331 was able to inhibit PC3 cells' growth in vitro in a dose-dependent manner, affecting the cell cycle and inducing apoptosis. Moreover, UniPR1331 promoted the PC3 epithelial phenotype, downregulating epithelial mesenchymal transition (EMT) markers. As a consequence, UniPR1331 reduced in vitro PC3 migration, invasion, and vasculomimicry capabilities. The antitumor activity of UniPR1331 was confirmed in vivo when administered alone or in combination with cytotoxic drugs in PC3-xenograft mice. Our results demonstrated that Eph antagonism is a promising strategy for inhibiting prostate cancer growth, especially in combination with cytotoxic drugs.

5.
Biochem Pharmacol ; 209: 115452, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792038

RESUMO

It is well demonstrated the key role of Eph-ephrin system, specifically of EphA2 receptor, in supporting tumor growth, invasion, metastasis and neovascularization. We previously identified FXR agonists as eligible antagonists of Eph-ephrin system. Herein we characterize new commercially available FXR (Farnesoid X Receptor) agonists as potential Eph ligands including Cilofexor, Nidufexor, Tropifexor, Turofexorate isopropyl and Vonafexor. Our exploration based on molecular modelling investigations and binding assays shows that Cilofexor binds specifically and reversibly to EphA2 receptor with a Ki value in the low micromolar range. Furthermore, Cilofexor interferes with the phosphorylation of EphA2 and the cell retraction and rounding in PC3 prostate cancer cells, both events depending on EphA2 activation. In conclusion, we can confirm that target hopping can be a successful approach to discover new moiety of protein-protein inhibitors.


Assuntos
Neoplasias da Próstata , Receptor EphA2 , Masculino , Humanos , Receptor EphA2/metabolismo , Efrina-A1/metabolismo , Ligação Proteica , Efrinas/metabolismo
6.
Pharmaceuticals (Basel) ; 14(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074058

RESUMO

Eph receptors, comprising A and B classes, interact with cell-bound ephrins generating bidirectional signaling. Although mainly related to carcinogenesis and organogenesis, the role of Eph/ephrin system in inflammation is growingly acknowledged. Recently, we showed that EphA/ephrin-A proteins can modulate the acute inflammatory responses induced by mesenteric ischemia/reperfusion, while beneficial effects were granted by EphB4, acting as EphB/ephrin-B antagonist, in a murine model of Crohn's disease (CD). Accordingly, we now aim to evaluate the effects of UniPR1331, a pan-Eph/ephrin antagonist, in TNBS-induced colitis and to ascertain whether UniPR1331 effects can be attributed to A- or B-type signaling interference. The potential anti-inflammatory action of UniPR1331 was compared to those of the recombinant proteins EphA2, a purported EphA/ephrin-A antagonist, and of ephrin-A1-Fc and EphA2-Fc, supposedly activating forward and reverse EphA/ephrin-A signaling, in murine TNBS-induced colitis and in stimulated cultured mononuclear splenocytes. UniPR1331 antagonized the inflammatory responses both in vivo, mimicking EphB4 protection, and in vitro; EphA/ephrin-A proteins were inactive or only weakly effective. Our findings represent a further proof-of-concept that blockade of EphB/ephrin-B signaling is a promising pharmacological strategy for CD management and highlight UniPR1331 as a novel drug candidate, seemingly working through the modulation of immune responses.

7.
J Crohns Colitis ; 15(5): 787-799, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33201214

RESUMO

BACKGROUND AND AIMS: Thrombin levels in the colon of Crohn's disease patients have recently been found to be elevated 100-fold compared with healthy controls. Our aim was to determine whether and how dysregulated thrombin activity could contribute to local tissue malfunctions associated with Crohn's disease. METHODS: Thrombin activity was studied in tissues from Crohn's disease patients and healthy controls. Intracolonic administration of thrombin to wild-type or protease-activated receptor-deficient mice was used to assess the effects and mechanisms of local thrombin upregulation. Colitis was induced in rats and mice by the intracolonic administration of trinitrobenzene sulphonic acid. RESULTS: Active forms of thrombin were increased in Crohn's disease patient tissues. Elevated thrombin expression and activity were associated with intestinal epithelial cells. Increased thrombin activity and expression were also a feature of experimental colitis in rats. Colonic exposure to doses of active thrombin comparable to what is found in inflammatory bowel disease tissues caused mucosal damage and tissue dysfunctions in mice, through a mechanism involving both protease-activated receptors -1 and -4. Intracolonic administration of the thrombin inhibitor dabigatran, as well as inhibition of protease-activated receptor-1, prevented trinitrobenzene sulphonic acid-induced colitis in rodent models. CONCLUSIONS: Our data demonstrated that increased local thrombin activity, as it occurs in the colon of patients with inflammatory bowel disease, causes mucosal damage and inflammation. Colonic thrombin and protease-activated receptor-1 appear as possible mechanisms involved in mucosal damage and loss of function and therefore represent potential therapeutic targets for treating inflammatory bowel disease.


Assuntos
Doença de Crohn/metabolismo , Receptores Ativados por Proteinase/metabolismo , Trombina/metabolismo , Animais , Estudos de Casos e Controles , Feminino , Humanos , Lactonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Piridinas/farmacologia , Ratos , Ratos Wistar , Regulação para Cima
8.
Pharmaceuticals (Basel) ; 13(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316101

RESUMO

The Eph receptors are the largest receptors tyrosine kinases (RTKs) family in humans and together with ephrin ligands constitute a complex cellular communication system often dysregulated in many tumors. The role of the Eph-ephrin system in colorectal cancer (CRC) has been investigated and different expression of Eph receptors have been associated with tumor development and progression. In light of this evidence, we investigated if a pharmacological approach aimed at inhibiting Eph/ephrin interaction through small molecules could prevent tumor growth in APC min/J mice. The 8-week treatment with the Eph-ephrin antagonist UniPR129 significantly reduced the number of adenomas in the ileum and decreased the diameter of adenomas in the same region. Overall our data suggested as UniPR129 could be able to slow down the tumor development in APC min/J mice. These results further confirm literature data about Eph kinases as a new valuable target in the intestinal cancer and for the first time showed the feasibility of the Eph-ephrin inhibition as a useful pharmacological approach against the intestinal tumorigenesis. In conclusion this work paves the way for further studies with Eph-ephrin inhibitors in order to confirm the Eph antagonism as innovative pharmacological approach with preventive benefit in the intestinal tumor development.

9.
Expert Opin Ther Targets ; 24(5): 403-415, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32197575

RESUMO

Introduction: The Eph-ephrin is a cell-cell communication system generating a forward signal in cell expressing Eph receptors and a reverse signal in ephrin-ligand expressing cells. While clearly involved in the insurgence and progression of cancer, the understanding of the molecular mechanisms regulated by this system needs development; this is a hurdle to the development of therapeutic strategies that can target the Eph receptors and/or their ephrin ligands.Areas covered: We have taken the opportunity to share some key questions on the most effective strategies to target the Eph-ephrin system. This article is based on our experience of the field and therefore is a Perspective and not comprehensive examination of the literature.Expert opinion: Targeting of the Eph-ephrin system has emerged as a potentially valuable approach for cancer therapy. Pharmacological tools have been reported in the last 15 years and these include forward signaling blockers such as kinases inhibitors and antagonists of forward and reverse signaling. Also, biologics including antibodies and recombinant proteins have been developed and some have reached early clinical stages. Data deem the Eph-ephrin system as a signaling axis that is an elusive target. A better understanding of the basic pharmacology behind the activity of available agents and a comprehensive knowledge of the ephrin biology are necessary. We are looking forward to knowing the opinion of the readers.


Assuntos
Efrinas/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Comunicação Celular/fisiologia , Progressão da Doença , Desenvolvimento de Medicamentos , Humanos , Ligantes , Neoplasias/patologia , Receptores da Família Eph/metabolismo
10.
Eur J Med Chem ; 189: 112083, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32000051

RESUMO

The EphA2 receptor has been validated in animal models as new target for treating tumors depending on angiogenesis and vasculogenic mimicry. In the present work, we extended our current knowledge on structure-activity relationship (SAR) data of two related classes of antagonists of the EphA2 receptor, namely 5ß-cholan-24-oic acids and 5ß-cholan-24-oyl l-ß-homotryptophan conjugates, with the aim to develop new antiangiogenic compounds able to efficiently prevent the formation of blood vessels. As a result of our exploration, we identified UniPR505, N-[3α-(Ethylcarbamoyl)oxy-5ß-cholan-24-oyl]-l-ß-homo-tryptophan (compound 14), as a submicromolar antagonist of the EphA2 receptor capable to block EphA2 phosphorylation and to inhibit neovascularization in a chorioallantoic membrane (CAM) assay.


Assuntos
Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/normas , Ácido Litocólico/química , Neovascularização Fisiológica/efeitos dos fármacos , Compostos Policíclicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptor EphA2/antagonistas & inibidores , Inibidores da Angiogênese/química , Animais , Proliferação de Células , Embrião de Galinha , Galinhas , Membrana Corioalantoide , Humanos , Masculino , Modelos Moleculares , Fosforilação , Compostos Policíclicos/química , Neoplasias da Próstata/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/normas , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
J Pharm Biomed Anal ; 180: 113067, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31891876

RESUMO

The interest on the role of gut microbiota in the biotransformation of drugs and xenobiotics has grown over the last decades and a deeper understanding of the mutual interactions is expected to help future improvements in the fields of drug development, toxicological risk assessment and precision medicine. In this paper, a microbiome drug metabolism case is presented, involving a lipophilic small molecule, N-(3ß-hydroxy-Δ5-cholen-24-oyl)-l-tryptophan, UniPR1331, active as antagonist of the Eph-ephrin system and effective in vivo in a murine orthotopic model of glioblastoma multiforme (GBM). Following the administration of a single 30 mg/kg dose (p.o.) to mice, maximal plasma levels were reached 30 min after dosing and rapidly declined thereafter. To explain the observed in vivo behaviour, in vitro phase I and II metabolism assays were conducted employing mouse and human liver subcellular fractions and profiling main metabolites by means of tandem (HPLC-ESI-MS/MS) and high resolution mass spectrometry (HPLC-ESI-HR-MS). In the presence of in vitro mouse liver fractions, UniPR1331 showed a low phase I metabolic clearance, despite the identification of a 3-oxo and several hydroxylated metabolites. Conversely, after oral administration of UniPR1331 to mice, a novel isobaric metabolite was detected that (i) was subjected, as parent UniPR1331, to enterohepatic circulation (ii) had not been previously identified in vitro in mouse liver microsomes and (iii) was not observed forming after intraperitoneal (i.p.) administration of UniPR1331. An in vitro faecal fermentation assay produced the same chemical entity supporting a major role of gut microbiota in the in vivo clearance of UniPR1331.


Assuntos
Efrinas/antagonistas & inibidores , Microbioma Gastrointestinal/fisiologia , Microssomos Hepáticos/metabolismo , Receptores da Família Eph/antagonistas & inibidores , Animais , Bile/metabolismo , Cromatografia Líquida de Alta Pressão , Fezes/química , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Taxa de Depuração Metabólica , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
12.
J Med Chem ; 62(23): 10833-10847, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31729878

RESUMO

Cystic fibrosis (CF) is a multiorgan disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR). In addition to respiratory impairment due to mucus accumulation, viruses and bacteria trigger acute pulmonary exacerbations, accelerating disease progression and mortality rate. Treatment complexity increases with patients' age, and simplifying the therapeutic regimen represents one of the key priorities in CF. We have recently reported the discovery of multitarget compounds able to "kill two birds with one stone" by targeting F508del-CFTR and PI4KIIIß and thus acting simultaneously as CFTR correctors and broad-spectrum enterovirus (EV) inhibitors. Starting from these preliminary results, we report herein a hit-to-lead optimization and multidimensional structure-activity relationship (SAR) study that led to compound 23a. This compound showed good antiviral and F508del-CFTR correction potency, additivity/synergy with lumacaftor, and a promising in vitro absorption, distribution, metabolism, and excretion (ADME) profile. It was well tolerated in vivo with no sign of acute toxicity and histological alterations in key biodistribution organs.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Microssomos Hepáticos/efeitos dos fármacos , Animais , Antivirais , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Masculino , Membranas Artificiais , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Ligação Proteica , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Testes de Toxicidade
13.
Life Sci ; 233: 116710, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31369762

RESUMO

AIMS: The naturally occurring compound curcumin has been proposed for a number of pharmacological applications. In spite of the promising chemotherapeutic properties of the molecule, the use of curcumin has been largely limited by its chemical instability in water. In this work, we propose the use of water soluble proteins to overcome this issue in perspective applications to photodynamic therapy of tumors. MATERIALS AND METHODS: Curcumin was bound to bovine serum albumin and its photophysical properties was studied as well as its effect on cell viability after light exposure through MTT assay and confocal imaging. KEY FINDINGS: Bovine serum albumin binds curcumin with moderate affinity and solubilizes the hydrophobic compound preserving its photophysical properties for several hours. Cell viability assays demonstrate that when bound to serum albumin, curcumin is an effective photosensitizer for HeLa cells, with better performance than curcumin alone. Confocal fluorescence imaging reveals that when curcumin is delivered alone, it preferentially associates with mitochondria, whereas curcumin bound to bovine serum albumin is found in additional locations within the cell, a fact that may be related to the higher phototoxicity observed in this case. SIGNIFICANCE: The higher bioavailability of the photosensitizing compound curcumin when bound to serum albumin may be exploited to increase the efficiency of the drug in photodynamic therapy of tumors.


Assuntos
Apoproteínas/metabolismo , Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Mioglobina/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Soroalbumina Bovina/metabolismo , Animais , Apoproteínas/química , Apoptose/efeitos da radiação , Bovinos , Sobrevivência Celular , Curcumina/química , Células HeLa , Cavalos , Humanos , Mioglobina/química , Fármacos Fotossensibilizantes/química , Soroalbumina Bovina/química
14.
Front Pharmacol ; 10: 691, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297055

RESUMO

Besides their long-known critical role in embryonic growth and in cancer development and progression, erythropoietin-producing hepatocellular carcinoma type B (EphB) receptor tyrosine kinases and their ephrin-B ligands are involved in the modulation of immune responses and in remodeling and maintaining the integrity of the intestinal epithelial layer. These processes are critically involved in the pathogenesis of inflammatory-based disorders of the gut, like inflammatory bowel diseases (IBDs). Accordingly, our aim was to investigate the role of the EphB/ephrin-B system in intestinal inflammation by assessing the local and systemic effects produced by its pharmacological manipulation in 2,4,6-trinitrobenzenesulfonic acid (TNBS)- (Th1-dependent model) and dextran sulphate sodium (DSS)- (innate response model) induced colitis in mice. To this purpose, we administered chimeric Fc-conjugated proteins, allegedly able to uni-directionally activate either forward (ephrin-B1-Fc) or reverse (EphB1-Fc) signaling, and the soluble monomeric EphB4 extracellular domain protein, that, simultaneously interfering with both signaling pathways, acts as EphB/ephrin-B antagonist.The blockade of the EphB/ephrin-B forward signaling by EphB4 and EphB1-Fc was ineffective against DSS-induced colitis while it evoked remarkable beneficial effects against TNBS colitis: it counteracted all the evaluated inflammatory responses and the changes elicited on splenic T lymphocytes subpopulations, without preventing the appearance of a splice variant of ephrin-B2 gene elicited by the haptenating agent in the colon. Interestingly, EphB4, preferentially displacing EphB4/ephrin-B2 interaction over EphB1/ephrin-B1 binding, was able to promote Tumor Necrosis Factor alpha (TNFα) release by splenic mononuclear cells in vitro. On the whole, the collected results point to a potential role of the EphB/ephrin-B system as a pharmacological target in intestinal inflammatory disorders and suggest that the therapeutic efficacy of its blockade seemingly works through the modulation of immune responses, independent of the changes at the transcriptional and translational level of EphB4 and ephrin-B2 genes.

15.
Biomacromolecules ; 20(5): 2024-2033, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30995399

RESUMO

Bioavailability of photosensitizers for cancer photodynamic therapy is often hampered by their low solubility in water. Here, we overcome this issue by using the water-soluble protein apomyoglobin (apoMb) as a carrier for the photosensitizer hypericin (Hyp). The Hyp-apoMb complex is quickly uptaken by HeLa and PC3 cells at submicromolar concentrations. Fluorescence emission of Hyp-apoMb is exploited to localize the cellular distribution of the photosensitizer. The plasma membrane is rapidly and efficiently loaded, and fluorescence is observed in the cytoplasm only at later times and to a lesser extent. Comparison with cells loaded with Hyp alone demonstrates that the uptake of the photosensitizer without the protein carrier is a slower, less efficient process, that involves the whole cell structure without preferential accumulation at the plasma membrane. Cell viability assays demonstrate that the Hyp-apoMb exhibits superior performance over Hyp. Similar results were obtained using tumor spheroids as three-dimensional cell culture models.


Assuntos
Antineoplásicos/administração & dosagem , Apoproteínas/química , Portadores de Fármacos/química , Mioglobina/química , Perileno/análogos & derivados , Fármacos Fotossensibilizantes/administração & dosagem , Antracenos , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Perileno/administração & dosagem , Perileno/química , Perileno/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Esferoides Celulares/efeitos dos fármacos
16.
Oncotarget ; 9(36): 24347-24363, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29849945

RESUMO

Glioblastoma multiforme (GBM) is the most malignant brain tumor, showing high resistance to standard therapeutic approaches that combine surgery, radiotherapy, and chemotherapy. As opposed to healthy tissues, EphA2 has been found highly expressed in specimens of glioblastoma, and increased expression of EphA2 has been shown to correlate with poor survival rates. Accordingly, agents blocking Eph receptor activity could represent a new therapeutic approach. Herein, we demonstrate that UniPR1331, a pan Eph receptor antagonist, possesses significant in vivo anti-angiogenic and anti-vasculogenic properties which lead to a significant anti-tumor activity in xenograft and orthotopic models of GBM. UniPR1331 halved the final volume of tumors when tested in xenografts (p<0.01) and enhanced the disease-free survival of treated animals in the orthotopic models of GBM both by using U87MG cells (40 vs 24 days of control, p<0.05) or TPC8 cells (52 vs 16 days, p<0.01). Further, the association of UniPR1331 with the anti-VEGF antibody Bevacizumab significantly increased the efficacy of both monotherapies in all tested models. Overall, our data promote UniPR1331 as a novel tool for tackling GBM.

17.
Biochem Pharmacol ; 147: 21-29, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29129483

RESUMO

Eph/ephrin system is an emerging target for cancer therapy but the lack of potent, stable and orally bioavailable compounds is impairing the development of the field. Since 2009 our research group has been devoted to the discovery and development of small molecules targeting Eph/ephrin system and our research culminated with the synthesis of UniPR129, a potent but problematic Eph/ephrin antagonist. Herein, we describe the in vitro pharmacological properties of two derivatives (UniPR139 and UniPR502) stemmed from structure of UniPR129. These two compounds acted as competitive and reversible antagonists of all Eph receptors reducing both ephrin-A1 and -B1 binding to EphAs and EphBs receptors in the low micromolar range. The compounds acted as antagonists inhibiting ephrin-A1-dependent EphA2 activation and UniPR139 exerted an anti-angiogenic effect, inhibiting HUVEC tube formation in vitro and VEGF-induced vessel formation in the chick chorioallantoic membrane assay. Finally, the oral bioavailability of UniPR139 represents a step forward in the search of molecules targeting the Eph/ephrin system and offers a new pharmacological tool useful for future in vivo studies.


Assuntos
Sistemas de Liberação de Medicamentos , Efrinas/metabolismo , Ácido Litocólico/análogos & derivados , Triptofano/análogos & derivados , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Embrião de Galinha , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ácido Litocólico/química , Ácido Litocólico/metabolismo , Ligação Proteica/fisiologia , Triptofano/química , Triptofano/metabolismo
18.
Eur J Med Chem ; 142: 152-162, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28780190

RESUMO

It is well established that the Eph/ephrin system plays a central role in the embryonic development, with minor implications in the physiology of the adult. However, it is overexpressed and deregulated in a variety of tumors, with a primary involvement in tumorigenesis, tumor angiogenesis, metastasis development, and cancer stem cell regeneration. Targeting the Eph/ephrin system with biologicals, including antibodies and recombinant proteins, reduces tumor growth in animal models of hematological malignancies, breast, prostate, colon, head and neck cancers and glioblastoma. Currently, some of these biopharmaceutical agents are under investigations in phase I or phase II clinical trials. Peptides and small molecules targeting protein-protein-interaction (PPI) are in the late preclinical phase where they are showing promising activity in models of glioblastoma, ovarian and lung cancer. The present review summarizes the most critical findings proposing the Eph/ephrin signaling system as a new target in molecularly targeted oncology.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Descoberta de Drogas , Efrinas/metabolismo , Neoplasias/tratamento farmacológico , Receptores da Família Eph/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Descoberta de Drogas/métodos , Humanos , Modelos Moleculares , Terapia de Alvo Molecular/métodos , Neoplasias/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
19.
Biochem Pharmacol ; 99: 18-30, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26462575

RESUMO

Amino acid conjugates of lithocholic acid (LCA) have been recently described as effective disruptors of the EphA2-ephrin-A1 interaction able to inhibit EphA2 phosphorylation in intact cells and thus able to block prometastatic responses such as cellular retraction and angiogenesis. However, these LCA-based compounds were significantly more potent at disrupting the EphA2-ephrin-A1 interaction than at blocking phenotype responses in cells, which might reflect an unclear mechanism of action or a metabolic issue responsible for a reduction of the compound concentration at the cell's surface. Through the synthesis of new compounds and their examination by a combination of cell-based assays and real-time interaction analysis by surface plasmon resonance, we showed at molecular level that l-tryptophan conjugates of lithocholic acid disrupt EphA2-ephrin-A1 interaction by targeting the EphA 2 receptor and that the presence of a polar group in position 3 of steroid scaffold is a key factor to increase the effective concentration of the compounds in cancer cell lines.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Receptor EphA2/antagonistas & inibidores , Receptor EphA2/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Linhagem Celular Tumoral , Fenômenos Químicos , Humanos , Ácido Litocólico/análogos & derivados , Ácido Litocólico/química , Ácido Litocólico/metabolismo , Ácido Litocólico/farmacologia , Simulação de Acoplamento Molecular/métodos , Inibidores de Proteínas Quinases/farmacologia , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Triptofano/análogos & derivados , Triptofano/química , Triptofano/metabolismo , Triptofano/farmacologia
20.
Eur J Med Chem ; 103: 312-24, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26363867

RESUMO

The Eph receptor-ephrin system is an emerging target for the development of novel anti-angiogenic therapies. Research programs aimed at developing small-molecule antagonists of the Eph receptors are still in their initial stage as available compounds suffer from pharmacological drawbacks, limiting their application in vitro and in vivo. In the present work, we report the design, synthesis and evaluation of structure-activity relationships of a class of Δ(5)-cholenoyl-amino acid conjugates as Eph-ephrin antagonists. As a major achievement of our exploration, we identified N-(3ß-hydroxy-Δ(5)-cholen-24-oyl)-L-tryptophan (UniPR1331) as the first small molecule antagonist of the Eph-ephrin system effective as an anti-angiogenic agent in endothelial cells, bioavailable in mice by the oral route and devoid of biological activity on G protein-coupled and nuclear receptors targeted by bile acid derivatives.


Assuntos
Aminoácidos/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Efrinas/antagonistas & inibidores , Receptores da Família Eph/antagonistas & inibidores , Aminoácidos/síntese química , Aminoácidos/química , Inibidores da Angiogênese/síntese química , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Efrinas/química , Humanos , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Receptores da Família Eph/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA