Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biofactors ; 48(3): 707-717, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35579277

RESUMO

High-density lipoproteins (HDL) are well known for their atheroprotective function, mainly due to their ability to remove cell cholesterol and to exert antioxidant and anti-inflammatory activities. Through the same mechanisms HDL could also affect the development and progression of tumors. Cancer cells need cholesterol to proliferate, especially in hormone-dependent tumors, as prostate cancer (PCa). Aim of the study was to investigate the ability of HDL to modulate cholesterol content and metabolism in androgen receptor (AR)-positive and AR-null PCa cell lines and the consequences on cell proliferation. HDL inhibited colony formation of LNCaP and PC3 cells. HDL reduced cell cholesterol content and proliferation of LNCaP cells loaded with low-density lipoproteins but were not effective on PC3 cells. Here, the expression of the ATP-binding cassette transporter A1 (ABCA1) was markedly reduced due to proteasome degradation. Bortezomib, a proteasome inhibitor, restored ABCA1 expression and HDL ability to promote cholesterol removal from PC3; consequently, HDL inhibited the proliferation of PC3 cells induced by LDL only after bortezomib pre-treatment. In conclusion, the antiproliferative activity of HDL on AR-positive and AR-null PCa cells also rely on cholesterol removal, a process in which the ABCA1 transporter plays a key role.


Assuntos
Colesterol , Lipoproteínas HDL , Neoplasias da Próstata , Complexo de Endopeptidases do Proteassoma , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/farmacologia , Bortezomib/farmacologia , Proliferação de Células , Colesterol/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Masculino , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158523, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31505261

RESUMO

AIMS: It has been hypothesized that the activity of lysosomal acid lipase (LAL), a key enzyme involved in lipid metabolism, is involved in the NAFLD phenotype. To clarify the role of LAL in NAFLD, we studied 164 consecutive patients with biopsy-proven NAFLD and fat-loaded HepG2 cells. METHODS: LAL activity was measured (i) on dried blood spots (DBS) from NAFLD patients and dyslipidemic subjects without fatty liver and (ii) on liver biopsies from NAFLD patients. LAL activity and expression were evaluated in HepG2 cells cultured in the presence of free fatty acids (FAs), with or without a PPAR-alpha agonist. RESULTS: LAL activity was significantly reduced in patients with NAFLD compared to dyslipidemic subjects. LAL activity measured in liver biopsies from NAFLD patients was highly correlated to that measured on DBS and was independent of LAL expression in the liver. In a fully adjusted model, LAL activity on DBS was associated only with platelets and, when normalized by platelet count, it did not differ according to fibrosis stage. In vitro, FA loading of HepG2 fully replicated the impairment of LAL activity observed in NALFD patients. In these cells, the activation of PPAR-alpha receptors prevented and corrected FA-induced LAL impairment, by stimulating FA oxidation and LAL expression. CONCLUSIONS: LAL activity is reduced in NAFLD patients, independently from disease progression. In vitro, impaired LAL activity induced by FA loading was rescued by PPAR-alpha activation. These data suggest that the pharmacological modulation of LAL should be explored in the management of NAFLD patients.


Assuntos
Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Esterol Esterase/metabolismo , Adulto , Ácidos Graxos/metabolismo , Feminino , Células Hep G2 , Hepatócitos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR alfa/metabolismo
3.
Sci Rep ; 8(1): 2236, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396407

RESUMO

Recent evidence suggests that oxidative stress can play a role in the pathogenesis and the progression of prostate cancer (PCa). Reactive oxygen species (ROS) generation is higher in PCa cells compared to normal prostate epithelial cells and this increase is proportional to the aggressiveness of the phenotype. Since high density lipoproteins (HDL) are known to exert antioxidant activities, their ability to reduce ROS levels and the consequent impact on cell proliferation was tested in normal and PCa cell lines. HDL significantly reduced basal and H2O2-induced oxidative stress in normal, androgen receptor (AR)-positive and AR-null PCa cell lines. AR, scavenger receptor BI and ATP binding cassette G1 transporter were not involved. In addition, HDL completely blunted H2O2-induced increase of cell proliferation, through their capacity to prevent the H2O2-induced shift of cell cycle distribution from G0/G1 towards G2/M phase. Synthetic HDL, made of the two main components of plasma-derived HDL (apoA-I and phosphatidylcholine) and which are under clinical development as anti-atherosclerotic agents, retained the ability of HDL to inhibit ROS production in PCa cells. Collectively, HDL antioxidant activity limits cell proliferation induced by ROS in AR-positive and AR-null PCa cell lines, thus supporting a possible role of HDL against PCa progression.


Assuntos
Antioxidantes/farmacologia , Apolipoproteína A-I/farmacologia , Proliferação de Células/efeitos dos fármacos , Lipoproteínas HDL/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilcolinas/farmacologia , Neoplasias da Próstata/patologia , Antioxidantes/síntese química , Apolipoproteína A-I/síntese química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Voluntários Saudáveis , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Células PC-3 , Fosfatidilcolinas/síntese química , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA