Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Infect Dis ; 145: 107090, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762045

RESUMO

OBJECTIVES: Encephalitis is a severe neurological syndrome for which herpesvirus and enteroviruses are the most common etiological agents. Arboviruses, a wildly diverse group of pathogens, are also critical epidemiological agents associated with encephalitis. In Brazil, little is known about the causative agents of encephalitis. METHODS: We conducted a hospital surveillance for encephalitis between 2020 and 2022. Molecular (RT-PCR and qPCR) and serological (virus-specific IgM and viral antigens) techniques were performed in cerebrospinal fluid and serum samples obtained from study participants. RESULTS: In the 43 participants evaluated, the etiologic agent or the presence of IgM was detected in 16 (37.2%). Nine (20.9%) cases were positive for chikungunya virus (CHIKV), three (7.0%) for dengue virus, two (4.7%) for human adenovirus, one (2.3%) for varicella-zoster virus, and one (2.3%) for enterovirus. Whole-genome sequencing revealed that the CHIKV identified belongs to the East/Central/South African lineage. CONCLUSION: Herein, CHIKV is a common pathogen identified in encephalitis cases. Our results reinforce previous evidence that chikungunya represents a significant cause of encephalitis during CHIKV outbreaks and epidemics and add to existing information on the epidemiology of encephalitis in Brazil.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Brasil/epidemiologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Masculino , Feminino , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/sangue , Adulto , Adolescente , Criança , Adulto Jovem , Pessoa de Meia-Idade , Pré-Escolar , Anticorpos Antivirais/sangue , Encefalite Viral/epidemiologia , Encefalite Viral/virologia , Encefalite Viral/diagnóstico , Imunoglobulina M/sangue , Idoso , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Lactente , Filogenia , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/isolamento & purificação , Enterovirus/isolamento & purificação , Enterovirus/genética , Sequenciamento Completo do Genoma
2.
Microorganisms ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674713

RESUMO

Viral hemorrhagic fever poses a significant public health challenge due to its severe clinical presentation and high mortality rate. The diagnostic process is hindered by similarity of symptoms across different diseases and the broad spectrum of pathogens that can cause hemorrhagic fever. In this study, we applied viral metagenomic analysis to 43 serum samples collected by the Public Health Laboratory (Fundação Ezequiel Dias, FUNED) in Minas Gerais State, Brazil, from patients diagnosed with hemorrhagic fever who had tested negative for the standard local hemorrhagic disease testing panel. This panel includes tests for Dengue virus (DENV) IgM, Zika virus IgM, Chikungunya virus IgM, yellow fever IgM, Hantavirus IgM, Rickettsia rickettsii IgM/IgG, and Leptospira interrogans IgM, in addition to respective molecular tests for these infectious agents. The samples were grouped into 18 pools according to geographic origin and analyzed through next-generation sequencing on the NextSeq 2000 platform. Bioinformatic analysis revealed a prevalent occurrence of commensal viruses across all pools, but, notably, a significant number of reads corresponding to the DENV serotype 2 were identified in one specific pool. Further verification via real-time PCR confirmed the presence of DENV-2 RNA in an index case involving an oncology patient with hemorrhagic fever who had initially tested negative for anti-DENV IgM antibodies, thereby excluding this sample from initial molecular testing. The complete DENV-2 genome isolated from this patient was taxonomically classified within the cosmopolitan genotype that was recently introduced into Brazil. These findings highlight the critical role of considering the patient's clinical condition when deciding upon the most appropriate testing procedures. Additionally, this study showcases the potential of viral metagenomics in pinpointing the viral agents behind hemorrhagic diseases. Future research is needed to assess the practicality of incorporating metagenomics into standard viral diagnostic protocols.

3.
J Med Virol ; 95(4): e28688, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36946498

RESUMO

Viral metagenomics has been extensively applied for the identification of emerging or poorly characterized viruses. In this study, we applied metagenomics for the identification of viral infections among pediatric patients with acute respiratory disease, but who tested negative for SARS-CoV-2. Twelve pools composed of eight nasopharyngeal specimens were submitted to viral metagenomics. Surprisingly, in two of the pools, we identified reads belonging to the poorly characterized Malawi polyomavirus (MWPyV). Then, the samples composing the positive pools were individually tested using quantitative polymerase chain reaction for identification of the MWPyV index cases. MWPyV-positive samples were also submitted to respiratory virus panel testing due to the metagenomic identification of different clinically important viruses. Of note, MWPyV-positive samples tested also positive for respiratory syncytial virus types A and B. In this study, we retrieved two complete MWPyV genome sequences from the index samples that were submitted to phylogenetic inference to investigate their viral origin. Our study represents the first molecular and genomic characterization of MWPyV obtained from pediatric patients in South America. The detection of MWPyV in acutely infected infants suggests that this virus might participate (coparticipate) in cases of respiratory symptoms. Nevertheless, future studies based on testing of a larger number of clinical samples and MWPyV complete genomes appear to be necessary to elucidate if this emerging polyomavirus might be clinically important.


Assuntos
COVID-19 , Infecções por Polyomavirus , Polyomavirus , Infecções Respiratórias , Vírus , Lactente , Criança , Humanos , Metagenômica , Brasil/epidemiologia , Malaui/epidemiologia , Filogenia , SARS-CoV-2 , Infecções por Polyomavirus/epidemiologia , Polyomavirus/genética , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia
4.
Mol Cell Oncol ; 10(1): 2188858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950183

RESUMO

Growing evidence suggests that metavirome changes could be associated increased risk for malignant cell transformation. Considering Viruses have been proposed as factors for prostate cancer induction. The objective of this study was to examine the composition of the plasma metavirome of patients with prostate cancer. Blood samples were obtained from 49 male patients with primary prostate adenocarcinoma. Thirty blood donors were included as a control group. The obtained next-generation sequencing data were analyzed using a bioinformatic pipeline for virus metagenomics. Viral reads with higher abundance were assembled in contigs and analyzed taxonomically. Viral agents of interest were also confirmed by qPCR. Anelloviruses and the Human Pegivirus-1 (HPgV-1) were the most abundant component of plasma metavirome. Clinically important viruses like hepatitis C virus (HCV), cytomegalovirus and human adenovirus type C were also identified. In comparison, the blood donor virome was exclusively composed of torque teno virus types (TTV) types. The performed HPgV-1 and HCV phylogeny revealed that these viruses belong to commonly detected in Brazil genotypes. Our study sheds light on the plasma viral abundance in patients with prostatic cancer. The obtained viral diversity allowed us to separate the patients and controls, probably suggesting that malignant processes may influence virome composition. More complex and multiple approach investigations are necessary to examine the likely causal relationship between metavirome and its nvolvement in prostate cancer.

5.
Front Immunol ; 14: 1073779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860854

RESUMO

Introduction: The Human T-lymphotropic virus type 1 (HTLV-1) was the first described human retrovirus. It is currently estimated that around 5 to 10 million people worldwide are infected with this virus. Despite its high prevalence, there is still no preventive vaccine against the HTLV-1 infection. It is known that vaccine development and large-scale immunization play an important role in global public health. To understand the advances in this field we performed a systematic review regarding the current progress in the development of a preventive vaccine against the HTLV-1 infection. Methods: This review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA®) guidelines and was registered at the International Prospective Register of Systematic Reviews (PROSPERO). The search for articles was performed in PubMed, Lilacs, Embase and SciELO databases. From the 2,485 articles identified, 25 were selected according to the inclusion and exclusion criteria. Results: The analysis of these articles indicated that potential vaccine designs in development are available, although there is still a paucity of studies in the human clinical trial phase. Discussion: Although HTLV-1 was discovered almost 40 years ago, it remains a great challenge and a worldwide neglected threat. The scarcity of funding contributes decisively to the inconclusiveness of the vaccine development. The data summarized here intends to highlight the necessity to improve the current knowledge of this neglected retrovirus, encouraging for more studies on vaccine development aiming the to eliminate this human threat. Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier (CRD42021270412).


Assuntos
Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Infecções por HTLV-I/prevenção & controle , Bases de Dados Factuais , Imunização , Desenvolvimento de Vacinas
6.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 69(2): 257-261, Feb. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422635

RESUMO

SUMMARY OBJECTIVE: Genome sequencing has been proved to be an excellent tool to monitor the molecular epidemiology of the disease caused by severe acute respiratory syndrome coronavirus 2, i.e., coronavirus disease 2019. Some reports of infected, vaccinated individuals have aroused great interest because they are primarily being infected with circulating variants of concern. To investigate the cases of infected, vaccinated individuals in Salvador, Bahia, Brazil, we performed genomic monitoring to estimate the magnitude of the different variants of concern in these cases. METHODS: Nasopharyngeal swabs from infected (symptomatic and asymptomatic), vaccinated or unvaccinated individuals (n=29), and quantitative reverse transcription polymerase chain reaction cycle threshold value (Ct values) of ≤30 were subjected to viral sequencing using nanopore technology. RESULTS: Our analysis revealed that the Omicron variant was found in 99% of cases and the Delta variant was found in only one case. Infected, fully vaccinated patients have a favorable clinical prognosis; however, within the community, they become viral carriers with the aggravating factor of viral dissemination of variants of concern not neutralized by the currently available vaccines. CONCLUSION: It is important to acknowledge the limitations of these vaccines and to develop new vaccines to emergent variants of concern, as is the case of influenza vaccine; going through new doses of the same coronavirus vaccines is "more of the same."

7.
Transfus Clin Biol ; 30(1): 143-146, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36306977

RESUMO

Merkel cell polyomavirus (MCPyV) is an oncogenic virus that has been etiologically linked to Merkel cell carcinoma. Low levels of MCPyV DNA have been detected in blood donors with unclear impact on transfusion. The prevalence of MCPyV DNA in Brazilian blood donors is unclear. Therefore, the objective of this study was to evaluate the MCPyV DNA prevalence among Brazilian blood donors. We examined the presence of MCPyV DNA by real-time PCR (qPCR) in a total of 450 serum samples obtained from blood donors from three Brazilian regions (North, Central-West and South). The overall estimated MCPyV DNA prevalence was 1.1% (CI = 95%, 0.16-2.06%). Divided by region, in North Brazil (city of Macapa, state of Amapá) and South Brazil (city of Santa Maria, state of Rio Grande do Sul), the MCPyV prevalence was the same: 1.33% (CI = 95%, range 0.0-3.14%). In Central-West Brazil (city of Brasilia), the MCPyV prevalence was 0.6% (CI = 95%, 0.0-1.96%). All MCPyV positive samples showed a high cycle threshold (median Ct = 35.5), most probably related to the low viral load. More studies are necessary to unveil the impact of this oncogenic virus on transfusion medicine and if such exists, especially in regards of its infectivity and transmission potential.


Assuntos
Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Humanos , Poliomavírus das Células de Merkel/genética , Infecções por Polyomavirus/epidemiologia , Brasil/epidemiologia , Prevalência , Doadores de Sangue , DNA Viral/genética
8.
Epidemiol. serv. saúde ; 32(2): e2022614, 2023. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1506220

RESUMO

O relato descreveu o primeiro curso presencial visando capacitar profissionais de saúde pública na realização de vigilância genômica em tempo real, durante períodos pandêmicos. Relato de experiência sobre um curso teórico-prático com foco em pesquisa e vigilância genômica, incluindo tecnologias de sequenciamento móvel, bioinformática, filogenética e modelagem epidemiológica. O evento contou com 162 participantes e foi o primeiro grande treinamento presencial realizado durante a epidemia de covid-19 no Brasil. Não foi detectada infecção pelo SARS-CoV-2 ao final do evento em nenhum participante, sugerindo a segurança e efetividade de todas as medidas de segurança adotadas. Os resultados do evento sugerem que é possível executar capacitação profissional com segurança durante pandemias, desde que seguidos todos os protocolos de segurança.


The objective of this report was to describe the first face-to-face course aimed at training public health professionals in performing real-time genomic surveillance during the pandemic period. Experience report on a theoretical-practical course focusing on genomic research and surveillance, including mobile sequencing technologies, bioinformatics, phylogenetics and epidemiological modeling. There were 162 participants in the event and it was the first major face-to-face training course conducted during the COVID-19 epidemic in Brazil. No cases of SARS-CoV-2 infection was detected among the participants at the end of the event, suggesting the safety and effectiveness of all safety measures adopted. The results of this experience suggest that it is possible to conduct professional training safely during pandemics, as long as all safety protocols are followed.


Este estudio tuvo como objetivo describir el primer curso presencial para capacitar a los profesionales de la salud pública para llevar a cabo la vigilancia genómica en tiempo real durante los períodos de pandemia. Este es un informe de experiencia en un curso teórico-práctico centrado en la investigación y vigilancia genómica, que incluye secuenciación móvil, bioinformática, filogenética y tecnologías de modelado epidemiológico. Este evento contó con la asistencia de 162 participantes y fue la primera gran capacitación presencial realizada durante la epidemia de COVID-19 en Brasil. No se detectó infección por SARS-CoV-2 al final del evento en ningún participante, lo que sugiere la seguridad y efectividad de todas las medidas de seguridad adoptadas. Por lo tanto, los resultados del evento sugieren que es posible realizar entrenamientos profesionales de manera segura durante pandemias, siempre y cuando se sigan todos los protocolos de seguridad.


Assuntos
Humanos , Masculino , Feminino , Transferência de Tecnologia , Biologia Computacional/educação , Capacitação de Recursos Humanos em Saúde , Capacitação Profissional , COVID-19/epidemiologia , Brasil/epidemiologia , Saúde Pública , Pessoal de Saúde/educação , Genômica/educação , Epidemias , SARS-CoV-2/isolamento & purificação , COVID-19/genética
9.
Proc Natl Acad Sci U S A ; 119(27): e2122050119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35763571

RESUMO

AIDS-defining cancers declined after combined antiretroviral therapy (cART) introduction, but lymphomas are still elevated in HIV type 1 (HIV-1)-infected patients. In particular, non-Hodgkin's lymphomas (NHLs) represent the majority of all AIDS-defining cancers and are the most frequent cause of death in these patients. We have recently demonstrated that amino acid (aa) insertions at the HIV-1 matrix protein p17 COOH-terminal region cause protein destabilization, leading to conformational changes. Misfolded p17 variants (vp17s) strongly impact clonogenic B cell growth properties that may contribute to B cell lymphomagenesis as suggested by the significantly higher frequency of detection of vp17s with COOH-terminal aa insertions in plasma of HIV-1-infected patients with NHL. Here, we expand our previous observations by assessing the prevalence of vp17s in large retrospective cohorts of patients with and without lymphoma. We confirm the significantly higher prevalence of vp17s in lymphoma patients than in HIV-1-infected individuals without lymphoma. Analysis of 3,990 sequences deposited between 1985 and 2017 allowed us to highlight a worldwide increasing prevalence of HIV-1 mutants expressing vp17s over time. Since genomic surveillance uncovered a cluster of HIV-1 expressing a B cell clonogenic vp17 dated from 2011 to 2019, we conclude that aa insertions can be fixed in HIV-1 and that mutant viruses displaying B cell clonogenic vp17s are actively spreading.


Assuntos
Linfócitos B , Antígenos HIV , HIV-1 , Linfoma Relacionado a AIDS , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Linfócitos B/virologia , Variação Genética , Antígenos HIV/genética , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Linfoma Relacionado a AIDS/epidemiologia , Linfoma Relacionado a AIDS/virologia , Prevalência , Estudos Retrospectivos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
10.
Mem. Inst. Oswaldo Cruz ; 117: e220109, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422145

RESUMO

BACKGROUND The human immunodeficiency virus type 1, F1 sub-subtype (HIV-1 F1) circulates in three continents: Africa, Europe, and South America. In Brazil, this sub-subtype co-circulates with subtypes B and C and several recombinant forms, mainly BF1 variants. OBJECTIVES This study aimed to reconstruct the dynamic history of HIV-1 F1 in Brazil. METHODS HIV-1 near full-length genome and pol gene nucleotide sequences available in public databases were assembled in two datasets (POL671 and NFLG53) to cover the largest number of F1 sub-subtype sequences. Phylodynamic and temporal analyses were performed. FINDINGS Two main strains of the F1 sub-subtype are circulating worldwide. The first (F1.I) was found among Brazilian samples (75%) and the second (F1.II) among Romanian (62%) and other European and African isolates. The F1 subtype epidemic in Brazil originated from a single entry into the country around 1970. This ancestral sample is related to samples isolated in European countries (France, Finland, and Belgium), which are possibly of African origin. Moreover, further migration (1998 CI: 1994-2003) of strains from Brazil to Europe (Spain and the UK) was observed. Interestingly, all different recombinant BF patterns found, even those from outside Brazil, present the same F1 lineage (F1.I) as an ancestor, which could be related to the acquisition of adaptive advantages for the recombinant progenies. MAIN CONCLUSIONS These findings are important for the understanding of the origin and dynamics of the F1 sub-subtype and a consequent better and greater understanding of the HIV-1 F1 and BF epidemic that still spreads from Brazil to other countries.

11.
Mem. Inst. Oswaldo Cruz ; 117: e220114, 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1405998

RESUMO

BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected the maritime sector due to virus transmission onboard and traffic restrictions. However, reports of SARS-CoV-2 transmission on board have been mostly restricted to those occurring on cruise ships. OBJECTIVES To report COVID-19 outbreaks in eight non-cruise vessels and discuss measures to prevent and control the onboard transmission of SARS-CoV-2. METHODS We investigated outbreaks of COVID-19 on vessels anchoring in Baía de Todos-os-Santos, Salvador, Brazil, between February and November 2021. FINDINGS Most vessels were cargo ships that had docked several times before anchoring in Salvador (five had docked in ≥ 9 ports). The crew ranged from 22 to 63 members. The infection attack rate on each vessel ranged from 9.7 to 88.9%. The risk of symptomatic infection largely varied among the crew of each vessel (0 to 91.6%). Overall, the risk of developing COVID-19 signs and symptoms was lower among crew members vaccinated (age-adjusted risk ratio: 0.19; 95% confidence interval 0.06-0.65). SARS-CoV-2 variants not previously identified in Salvador were detected (C.14, B.1.617.2 and B.1.351). MAIN CONCLUSIONS Despite maritime guidelines to avert COVID-19 on board, outbreaks have happened. The multiple stopovers of non-cruise vessels during their routes may contribute to the spread of SARS-CoV-2 variants worldwide. Reducing the onboard transmission of SARS-CoV-2 depends on joint efforts by the crew and local health authorities and, equally important, achieving high vaccination coverage to prevent infections and illness.

12.
J Biomol Struct Dyn ; 39(1): 219-235, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31854239

RESUMO

Yellow fever disease is considered a re-emerging major health issue which has caused recent outbreaks with a high number of deaths. Tropical countries, mainly African and South American, are the most affected by Yellow fever outbreaks. Despite the availability of an attenuated vaccine, its use is limited for some groups such as pregnant and nursing women, immunocompromised and immunosuppressed patients, elderly people >65 years, infants <6 months and patients with biological disorders like thymus disorders. In order to achieve new preventive measures, we applied immunoinformatics approaches to develop a multi-epitope-based subunit vaccine for Yellow fever virus. Different epitopes, related to humoral and cell-mediated immunity, were predicted for complete polyproteins of two Yellow fever strains (Asibi and 17 D vaccine). Those epitopes common for both strains were mapped into a set of 137 sequences of Yellow fever virus, including 77 sequences from a recent outbreak at the state of Minas Gerais, southeast Brazil. Therefore, the present work uses robust bioinformatics approaches for the identification of a multi-epitope vaccine against the Yellow fever virus. Our results indicate that the identified multi-epitope vaccine might stimulate humoral and cellular immune responses and could be a potential vaccine candidate against Yellow fever virus infection. Hence, it should be subjected to further experimental validations. Communicated by Ramaswamy H. Sarma.


Assuntos
Epitopos de Linfócito T , Vírus da Febre Amarela , Idoso , Biologia Computacional , Feminino , Humanos , Vacinas de Subunidades Antigênicas , Vírus da Febre Amarela/genética
13.
J Transl Med ; 18(1): 329, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867854

RESUMO

BACKGROUND: The new Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which was first detected in Wuhan (China) in December of 2019 is responsible for the current global pandemic. Phylogenetic analysis revealed that it is similar to other betacoronaviruses, such as SARS-CoV and Middle-Eastern Respiratory Syndrome, MERS-CoV. Its genome is ∼ 30 kb in length and contains two large overlapping polyproteins, ORF1a and ORF1ab that encode for several structural and non-structural proteins. The non-structural protein 1 (nsp1) is arguably the most important pathogenic determinant, and previous studies on SARS-CoV indicate that it is both involved in viral replication and hampering the innate immune system response. Detailed experiments of site-specific mutagenesis and in vitro reconstitution studies determined that the mechanisms of action are mediated by (a) the presence of specific amino acid residues of nsp1 and (b) the interaction between the protein and the host's small ribosomal unit. In fact, substitution of certain amino acids resulted in reduction of its negative effects. METHODS: A total of 17,928 genome sequences were obtained from the GISAID database (December 2019 to July 2020) from patients infected by SARS-CoV-2 from different areas around the world. Genomes alignment was performed using MAFFT (REFF) and the nsp1 genomic regions were identified using BioEdit and verified using BLAST. Nsp1 protein of SARS-CoV-2 with and without deletion have been subsequently modelled using I-TASSER. RESULTS: We identified SARS-CoV-2 genome sequences, from several Countries, carrying a previously unknown deletion of 9 nucleotides in position 686-694, corresponding to the AA position 241-243 (KSF). This deletion was found in different geographical areas. Structural prediction modelling suggests an effect on the C-terminal tail structure. CONCLUSIONS: Modelling analysis of a newly identified deletion of 3 amino acids (KSF) of SARS-CoV-2 nsp1 suggests that this deletion could affect the structure of the C-terminal region of the protein, important for regulation of viral replication and negative effect on host's gene expression. In addition, substitution of the two amino acids (KS) from nsp1 of SARS-CoV was previously reported to revert loss of interferon-alpha expression. The deletion that we describe indicates that SARS-CoV-2 is undergoing profound genomic changes. It is important to: (i) confirm the spreading of this particular viral strain, and potentially of strains with other deletions in the nsp1 protein, both in the population of asymptomatic and pauci-symptomatic subjects, and (ii) correlate these changes in nsp1 with potential decreased viral pathogenicity.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Deleção de Sequência , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Sequência de Bases , Betacoronavirus/patogenicidade , COVID-19 , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/epidemiologia , Frequência do Gene , Genoma Viral , Geografia , Humanos , Lisina/genética , Modelos Moleculares , Pandemias/estatística & dados numéricos , Fenilalanina/genética , Pneumonia Viral/epidemiologia , Domínios Proteicos/genética , SARS-CoV-2 , Serina/genética , Proteínas não Estruturais Virais/química , Virulência/genética , Replicação Viral/genética
14.
F1000Res ; 9: 576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802318

RESUMO

Background: There are no known medicines or vaccines to control the COVID-19 pandemic caused by SARS-CoV-2 (nCoV). Antiviral peptides are superior to conventional drugs and may also be effective against COVID-19. Hence, we investigated the SARS-CoV-2 Spike receptor-binding domain (nCoV-RBD) that interacts with hACE2 for viral attachment and entry. Methods: Three strategies and bioinformatics approaches were employed to design potential nCoV-RBD - hACE2 interaction-blocking peptides that may restrict viral attachment and entry. Firstly, the key residues interacting with nCoV-RBD - hACE2 are identified and hACE2 sequence-based peptides are designed. Second, peptides from five antibacterial peptide databases that block nCoV-RBD are identified; finally, a chimeric peptide design approach is used to design peptides that can bind to key nCoV-RBD residues. The final peptides are selected based on their physiochemical properties, numbers and positions of key residues binding, binding energy, and antiviral properties. Results: We found that: (i) three amino acid stretches in hACE2 interact with nCoV-RBD; (ii) effective peptides must bind to three key positions of nCoV-RBD (Gly485/Phe486/Asn487, Gln493, and Gln498/Thr500/Asn501); (iii) Phe486, Gln493, and Asn501 are critical residues; (iv) AC20 and AC23 derived from hACE2 may block two key critical positions; (iv) DBP6 identified from databases can block the three sites of the nCoV-RBD and interacts with one critical position, Gln498; (v) seven chimeric peptides were considered promising, among which cnCoVP-3, cnCoVP-4, and cnCoVP-7 are the top three; and (vi) cnCoVP-4 meets all the criteria and is the best peptide. Conclusions: To conclude, using three different bioinformatics approaches, we identified 17 peptides that can potentially bind to the nCoV-RBD that interacts with hACE2. Binding these peptides to nCoV-RBD may potentially inhibit the virus to access hACE2 and thereby may prevent the infection. Out of 17, 10 peptides have promising potential and need further experimental validation.


Assuntos
Infecções por Coronavirus , Pandemias , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Pneumonia Viral , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2 , Betacoronavirus , COVID-19 , Humanos , Receptores Virais/química , SARS-CoV-2
15.
Biomed Res Int ; 2020: 4389089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596311

RESUMO

The Coronavirus Disease 2019 (COVID-19) is a new viral infection caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2). Genomic analyses have revealed that SARS-CoV-2 is related to Pangolin and Bat coronaviruses. In this report, a structural comparison between the Sars-CoV-2 Envelope and Membrane proteins from different human isolates with homologous proteins from closely related viruses is described. The analyses here reported show the high structural similarity of Envelope and Membrane proteins to the counterparts from Pangolin and Bat coronavirus isolates. However, the comparisons have also highlighted structural differences specific of Sars-CoV-2 proteins which may be correlated to the cross-species transmission and/or to the properties of the virus. Structural modelling has been applied to map the variant sites onto the predicted three-dimensional structure of the Envelope and Membrane proteins.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Proteínas do Envelope Viral/química , Proteínas da Matriz Viral/química , Alphacoronavirus/química , Alphacoronavirus/classificação , Alphacoronavirus/genética , Sequência de Aminoácidos , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , COVID-19 , Quirópteros/virologia , Coronaviridae/química , Coronaviridae/classificação , Coronaviridae/genética , Proteínas do Envelope de Coronavírus , Eutérios/virologia , Humanos , Modelos Moleculares , Pandemias , Conformação Proteica , SARS-CoV-2 , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Homologia Estrutural de Proteína , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética
16.
J Med Virol ; 92(6): 584-588, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32083328

RESUMO

Last December 2019, a new virus, named novel Coronavirus (COVID-2019) causing many cases of severe pneumonia was reported in Wuhan, China. The virus knowledge is limited and especially about COVID-2019 pathogenesis. The Open Reading Frame 1ab (ORF1ab) of COVID-2019 has been analyzed to evidence the presence of mutation caused by selective pressure on the virus. For selective pressure analysis fast-unconstrained Bayesian approximation (FUBAR) was used. Homology modelling has been performed by SwissModel and HHPred servers. The presence of transmembrane helical segments in Coronavirus ORF1ab non structural protein 2 (nsp2) and nsp3 was tested by TMHMM, MEMSAT, and MEMPACK tools. Three-dimensional structures have been analyzed and displayed using PyMOL. FUBAR analysis revealed the presence of potential sites under positive selective pressure (P < .05). Position 723 in the COVID-2019 has a serine instead a glycine residue, while at aminoacidic position 1010 a proline instead an isoleucine. Significant (P < .05) pervasive negative selection in 2416 sites (55%) was found. The positive selective pressure could account for some clinical features of this virus compared with severe acute respiratory syndrome (SARS) and Bat SARS-like CoV. The stabilizing mutation falling in the endosome-associated-protein-like domain of the nsp2 protein could account for COVID-2019 high ability of contagious, while the destabilizing mutation in nsp3 proteins could suggest a potential mechanism differentiating COVID-2019 from SARS. These data could be helpful for further investigation aimed to identify potential therapeutic targets or vaccine strategy, especially in the actual moment when the epidemic is ongoing and the scientific community is trying to enrich knowledge about this new viral pathogen.


Assuntos
Betacoronavirus/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Proteínas não Estruturais Virais/química , Proteínas Virais/química , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/virologia , Feminino , Expressão Gênica , Humanos , Masculino , Modelos Moleculares , Mutação , Pandemias , Pneumonia Viral/virologia , Poliproteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2 , Seleção Genética , Homologia Estrutural de Proteína , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Int J Infect Dis ; 75: 11-14, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30076990

RESUMO

Opsoclonus-myoclonus-ataxia syndrome (OMAS) is a rare neurological disorder characterized by irregular multidirectional eye movements, myoclonus, cerebellar ataxia, sleep disturbances, and cognitive dysfunction. Although most commonly related to paraneoplastic syndrome, this condition has occasionally been described following infectious illnesses. This article reports the first case of OMAS in association with chikungunya and dengue virus co-infection. The genetic analysis identified chikungunya virus of East/Central/South African genotype and dengue serotype 4 virus of genotype II. This report represents an unusual clinical syndrome associated with viral co-infection and reinforces the need for clinical vigilance with regard to neurological syndromes in the context of emergent arboviruses.


Assuntos
Febre de Chikungunya/complicações , Coinfecção/complicações , Dengue/complicações , Síndrome de Opsoclonia-Mioclonia/etiologia , Adulto , Vírus Chikungunya/genética , Vírus da Dengue/genética , Feminino , Humanos , Síndrome de Opsoclonia-Mioclonia/tratamento farmacológico
18.
BMC Public Health ; 18(1): 748, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914449

RESUMO

BACKGROUND: Globally the access to HIV testing has greatly increased over the past 30 years. Nonetheless, a high proportion of people living with HIV remains undiagnosed, even in resource rich countries. To increase the proportion of people aware of their HIV serostatus and their access to medical care, several strategies have been proposed including HIV rapid test programs offered outside health facilities. The aim of this project was to evaluate the feasibility and efficacy of the HIV rapid testing offered in community and outreach settings in Italy. METHODS: We conducted a national demonstration project on HIV rapid tests offered in community and outreach settings, including nongovernmental organization (NGO) facilities, primary care services for migrants and low-threshold services or mobile units for drug users (DU services). HIV rapid test on oral fluid (OraQuick®; Orasure Technologies) was anonymously offered to eligible people who presented themselves at the selected sites. Those with reactive results were referred to a specialized outpatient unit for confirmatory testing and medical care. RESULTS: Over a period of six months a total of 2949 tests were performed and 45.2% of individuals tested had not been previously tested. Overall 0.9% (27/2949) of tested people had a preliminary positive test. In NGO facilities the positivity rate was 1%. All subjects who performed their confirmatory test were confirmed as positive. In services for migrants the positivity rate was 0.5 and 80% were referred to care (with 1 false positive test). In DU services we observed the highest positivity rate (1.4%) but the lowest linkage to care (67%), with 1 false positive test. CONCLUSION: Our project showed that the offering of an HIV rapid testing program in community and outreach settings in Italy is feasible and that it may reach people who have never been tested before, while having a significant yield in terms of new HIV diagnoses as well.


Assuntos
Centros Comunitários de Saúde , Relações Comunidade-Instituição , Infecções por HIV/diagnóstico , Programas de Rastreamento/métodos , Adulto , Estudos de Viabilidade , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade
19.
Infect Genet Evol ; 48: 95-101, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27940215

RESUMO

INTRODUCTION: Human T-lymphotropic virus (HTLV) is an endemic virus in some parts of the world, with Africa being home to most of the viral genetic diversity. In Brazil, HTLV-1 is endemic amongst Japanese and African immigrant populations. Multiple introductions of the virus in Brazil from other epidemic foci were hypothesized. The long terminal repeat (LTR) region of HTLV-1 was used to infer the origin of the virus in Brazil, using phylogenetic analysis. METHODS: LTR sequences were obtained from the HTLV-1 database (http://htlv1db.bahia.fiocruz.br). Sequences were aligned and maximum-likelihood and Bayesian tree topologies were inferred. Brazilian specific clusters were identified and molecular-clock and coalescent models were used to estimate each cluster's time to the most recent common ancestor (tMRCA). RESULTS: Three Brazilian clusters were identified with a posterior probability ranged from 0.61 to 0.99. Molecular clock analysis of these three clusters dated back their respective tMRCAs between the year 1499 and the year 1668. Additional analysis also identified a close association between Brazilian sequences and new sequences from South Africa. CONCLUSION: Our results support the hypothesis of a multiple introductions of HTLV-1 into Brazil, with the majority of introductions occurring in the post-Colombian period. Our results further suggest that HTLV-1 introduction into Brazil was facilitated by the trans-Atlantic slave trade from endemic areas of Africa. The close association between southern African and Brazilian sequences also suggested that greater numbers of the southern African Bantu population might also have been part of the slave trade than previously thought.


Assuntos
Infecções por HTLV-I/epidemiologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Oceano Atlântico , Brasil/epidemiologia , Pessoas Escravizadas , Epidemias , Genes Virais , Infecções por HTLV-I/virologia , Humanos , Análise de Sequência de DNA , África do Sul/epidemiologia , Sequências Repetidas Terminais
20.
Pathog Glob Health ; 110(7-8): 269-274, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27670692

RESUMO

Zika virus (ZIKV) is an emerging Flavivirus that have recently caused an outbreak in Brazil and rapid spread in several countries. In this study, the consequences of ZIKV evolution on protein recognition by the host immune system have been analyzed. Evolutionary analysis was combined with homology modeling and T-B cells epitope predictions. Two separate clades, the African one with the Uganda sequence, as the most probable ancestor, and the second one containing all the most recent sequences from the equatorial belt were identified. Brazilian strains clustered all together and closely related to the French Polynesia isolates. A strong presence of a negatively selected site in the envelope gene (Env) protein was evidenced, suggesting a probable purging of deleterious polymorphisms in functionally important genes. Our results show relative conservancy of ZIKV sequences when envelope and other non-structural proteins (NS3 and NS5) are analyzed by homology modeling. However, some regions within the consensus sequence of NS5 protein and to a lesser extent in the envelope protein, show localized high mutation frequency corresponding to a considerable alteration in protein stability. In terms of viral immune escape, envelope protein is under a higher selective pressure than NS5 and NS3 proteins for HLA class I and II molecules. Moreover, envelope mutations that are not strictly related to T-cell immune responses are mostly located on the surface of the protein in putative B-cell epitopes, suggesting an important contribution of B cells in the immune response as well.


Assuntos
Epidemias , Modelos Moleculares , Filogenia , Infecção por Zika virus/epidemiologia , Zika virus/genética , Linfócitos B/imunologia , Sequência Consenso , Epitopos/genética , Evolução Molecular , Humanos , Mutação , Linfócitos T/imunologia , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Zika virus/classificação , Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA