Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 69(31): 8819-8827, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324321

RESUMO

Metal-chelating peptides (MCP) are considered as indirect antioxidants due to their capacity to inhibit radical chain reaction and oxidation. Here, we propose a new proof of concept for the screening of MCPs present in protein hydrolysates for valorizing their antioxidant properties by using the emerging time-resolved molecular dynamics technology, switchSENSE. This method unveils possible interactions between MCPs and immobilized nickel ions using fluorescence and electro-switchable DNA chips. The switchSENSE method was first set up on synthetic peptides known for their metal-chelating properties. Then, it was applied to soy and tilapia viscera protein hydrolysates. Their Cu2+-chelation capacity was, in addition, determined by UV-visible spectrophotometry as a reference method. The switchSENSE method has displayed a high sensitivity to evidence the presence of MCPs in both hydrolysates. Hence, we demonstrate for the first time that this newly introduced technology is a convenient methodology to screen protein hydrolysates in order to determine the presence of MCPs before launching time-consuming separations.


Assuntos
Quelantes , Hidrolisados de Proteína , Antioxidantes , Peptídeos , Tecnologia
2.
Fungal Genet Biol ; 148: 103506, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450403

RESUMO

The Omega class of glutathione transferases (GSTs) forms a distinct class within the cytosolic GST superfamily because most of them possess a catalytic cysteine residue. The human GST Omega 1 isoform was first characterized twenty years ago, but it took years of work to clarify the roles of the human isoforms. Concerning the kingdom of fungi, little is known about the cellular functions of Omega glutathione transferases (GSTOs), although they are widely represented in some of these organisms. In this study, we re-assess the phylogeny and the classification of GSTOs based on 240 genomes of mushroom-forming fungi (Agaricomycetes). We observe that the number of GSTOs is not only extended in the order of Polyporales but also in other orders such as Boletales. Our analysis leads to a new classification in which the fungal GSTOs are divided into two Types A and B. The catalytic residue of Type-A is either cysteine or serine, while that of Type-B is cysteine. The present study focuses on Trametes versicolor GSTO isoforms that possess a catalytic cysteine residue. Transcriptomic data show that Type-A GSTOs are constitutive enzymes while Type-B are inducible ones. The crystallographic analysis reveals substantial structural differences between the two types while they have similar biochemical profiles in the tested conditions. Additionally, these enzymes have the ability to bind antioxidant molecules such as wood polyphenols in two possible binding sites as observed from X-ray structures. The multiplication of GSTOs could allow fungal organisms to adapt more easily to new environments.


Assuntos
Agaricales/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Variação Genética , Glutationa Transferase/química , Glutationa Transferase/genética , Filogenia , Agaricales/química , Agaricales/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Glutationa Transferase/classificação , Glutationa Transferase/metabolismo , Modelos Moleculares , Conformação Proteica
3.
FEBS J ; 288(9): 2956-2969, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33124131

RESUMO

The eukaryotic translation elongation factor 1Bγ (eEF1Bγ) is an atypical member of the glutathione transferase (GST) superfamily. Contrary to more classical GSTs having a role in toxic compound detoxification, eEF1Bγ is suggested to act as a scaffold protein, anchoring the elongation factor complex EF1B to the endoplasmic reticulum. In this study, we show that eEF1Bγ from the basidiomycete Phanerochaete chrysosporium is fully active as a glutathione transferase in vitro and undergoes conformational changes upon binding of oxidized glutathione. Using real-time analyses of biomolecular interactions, we show that GSSG allows eEF1Bγ to physically interact with other GSTs from the Ure2p class, opening new perspectives for a better understanding of the role of eEF1Bγ in cellular oxidative stress response.


Assuntos
Glutationa Peroxidase/genética , Estresse Oxidativo/genética , Fator 1 de Elongação de Peptídeos/ultraestrutura , Phanerochaete/genética , Príons/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos/genética , Animais , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Glutationa/genética , Dissulfeto de Glutationa/genética , Glutationa Peroxidase/ultraestrutura , Glutationa Transferase/genética , Humanos , Camundongos , Fator 1 de Elongação de Peptídeos/genética , Phanerochaete/ultraestrutura , Príons/ultraestrutura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/ultraestrutura
4.
PLoS One ; 11(10): e0164678, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27736955

RESUMO

Glutathionyl-hydroquinone reductases (GHRs) belong to the recently characterized Xi-class of glutathione transferases (GSTXs) according to unique structural properties and are present in all but animal kingdoms. The GHR ScECM4 from the yeast Saccharomyces cerevisiae has been studied since 1997 when it was found to be potentially involved in cell-wall biosynthesis. Up to now and in spite of biological studies made on this enzyme, its physiological role remains challenging. The work here reports its crystallographic study. In addition to exhibiting the general GSTX structural features, ScECM4 shows extensions including a huge loop which contributes to the quaternary assembly. These structural extensions are probably specific to Saccharomycetaceae. Soaking of ScECM4 crystals with GS-menadione results in a structure where glutathione forms a mixed disulfide bond with the cysteine 46. Solution studies confirm that ScECM4 has reductase activity for GS-menadione in presence of glutathione. Moreover, the high resolution structures allowed us to propose new roles of conserved residues of the active site to assist the cysteine 46 during the catalytic act.


Assuntos
Glutationa Transferase/química , Quinonas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Glutationa/química , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Quinonas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Vitamina K 3/química , Vitamina K 3/metabolismo
5.
Biochem J ; 473(6): 717-31, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26699905

RESUMO

Dehydroascorbate reductases (DHARs), enzymes belonging to the GST superfamily, catalyse the GSH-dependent reduction of dehydroascorbate into ascorbate in plants. By maintaining a reduced ascorbate pool, they notably participate to H2O2 detoxification catalysed by ascorbate peroxidases (APXs). Despite this central role, the catalytic mechanism used by DHARs is still not well understood and there is no supportive 3D structure. In this context, we have performed a thorough biochemical and structural analysis of the three poplar DHARs and coupled this to the analysis of their transcript expression patterns and subcellular localizations. The transcripts for these genes are mainly detected in reproductive and green organs and the corresponding proteins are expressed in plastids, in the cytosol and in the nucleus, but not in mitochondria and peroxisomes where ascorbate regeneration is obviously necessary. Comparing the kinetic properties and the sensitivity to GSSG-mediated oxidation of DHAR2 and DHAR3A, exhibiting 1 or 3 cysteinyl residues respectively, we observed that the presence of additional cysteines in DHAR3A modifies the regeneration mechanism of the catalytic cysteine by forming different redox states. Finally, from the 3D structure of DHAR3A solved by NMR, we were able to map the residues important for the binding of both substrates (GSH and DHA), showing that DHAR active site is very selective for DHA recognition and providing further insights into the catalytic mechanism and the roles of the additional cysteines found in some DHARs.


Assuntos
Ácido Ascórbico/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredutases/metabolismo , Populus/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Nicotiana
6.
Food Chem ; 187: 305-13, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25977031

RESUMO

Nonenzymatic deamidation of asparaginyl residues can occur spontaneously under physiological conditions principally when a glycyl residue is at the carboxyl side of Asn and leads to formation of aspartyl and isoaspartyl residues. This modification can change the biological activity of proteins or peptides and trigger an auto-immune response. The α-lactalbumins of members of the Camelidae family are the only of described α-lactalbumins that carry two AsnGly sequences. In the present study, high-resolution mass spectrometry, which enables accurate mass measurement has shown that Asn(16) and Asn(45) underwent a nonenzymatic deamidation, the sequence Asn(45)-Gly(46) being deamidated spontaneously at near-neutral and basic pH and Asn(16)-Gly(17) rather at basic pH. The 16-17 sequence was probably stabilized at near-neutral pH by hydrogen bonds according to the molecular modelisation performed with the camel protein.


Assuntos
Lactalbumina/análise , Leite/química , Sequência de Aminoácidos , Animais , Asparagina/química , Camelus , Eletroforese em Gel Bidimensional , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Conformação Proteica
7.
Food Chem ; 183: 129-35, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25863620

RESUMO

The purpose of this study was to improve two common tests used for antioxidant capacity measurements, i.e. the reducing power and chelating ability measurements, for appropriate comparisons between the molecules tested and chosen references, as the usual methods are often performed in a qualitative way rather than a quantitative way. After revision, it was then possible to determine an AERC indice (Ascorbate Equivalent Reducing Capacity) and a CECC (Carnosine Equivalent Chelating Capacity) or EECC (EDTA Equivalent Chelating Capacity) indice according to the standard chosen, by analogy to the TEAC indice (Trolox Equivalent Antioxidant Capacity) already used in many reported works to determine the free radical scavenging activity. Thus, the determination of these relative indices enables the comparison of antioxidative capacities obtained in various studies. The adaptation of these two tests to micro-scales and the calculation of AERC, EECC and CECC were performed on model peptides.


Assuntos
Antioxidantes/química , Ácido Ascórbico/química , Quelantes/química , Peptídeos/análise
8.
Appl Microbiol Biotechnol ; 97(22): 9787-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077683

RESUMO

The trend to confer new functional properties to fermented dairy products by supplementation with bioactive peptides is growing in order to encounter the challenge of health-promoting foods. But these functional ingredients have not to be hydrolysed by proteases of bacteria used in the manufacture of these products. One of the two yoghurt bacteria, Streptococcus thermophilus, has long been considered as weakly proteolytic since its only cell wall-associated subtilisin-like protease, called PrtS, is not always present. Nevertheless, a recent study pointed out a possible peptidase activity in certain strains. In this present study, the stability of milk-derived bioactive peptides, e.g. the anxiolytic peptide, αs1-CN-(f91-97), in the presence of two different S. thermophilus strains with PrtS+ or PrtS− phenotype was studied. Both strains appeared to be capable of hydrolysing the αs1-CN-(f91-97) and other bioactive peptides by recurrent removal of N-terminal residues. The hydrolysis was neither due to intracellular peptidases nor to HtrA protease. Results obtained showed that the observed activity originates from the presence at the surface of both strains of an extracellular aminopeptidase activity. Moreover, a cell wall-associated X-prolyl dipeptidyl peptidase activity was also highlighted when ß-casomorphin-7 was used as substrate. All of these findings suggest that, in order to use fermented milks as vector of bioactive peptides, the stability of these bioactive peptides in this kind of products implies to carefully characterize the potential action of the surface proteolytic enzymes of S. thermophilus.


Assuntos
Enzimas Imobilizadas/metabolismo , Leite/química , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Streptococcus thermophilus/enzimologia , Animais , Hidrólise
9.
FEBS J ; 279(23): 4361-73, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23050782

RESUMO

The hepatic removal of triglyceride-rich chylomicrons during the postprandial phase represents an important step towards determining the bioavailability of dietary lipids amongst the peripheral tissues. Indeed, elevated postprandial lipemia is often associated with obesity and increased risk of coronary heart disease. The milk protein, lactoferrin, has been shown to inhibit hepatic chylomicron remnant removal by the liver, resulting in increased postprandial lipemia. Despite numerous studies on potential targets for lactoferrin, the molecular mechanisms underlying the effect of lactoferrin remain unclear. We recently demonstrated that the lipolysis stimulated lipoprotein receptor (LSR) contributes to the removal of triglyceride-rich lipoproteins during the postprandial phase. Here, we report that while lactoferrin does not have any significant effect on LSR protein levels in mouse Hepa1-6 cells, this protein colocalizes with LSR in cells but only in the presence of oleate, which is needed to obtain LSR in its active form as lipoprotein receptor. Ligand blotting using purified LSR revealed that lactoferrin binds directly to the receptor in the presence of oleate and prevents the binding of triglyceride-rich lipoproteins. Both C- and N-lobes of lactoferrin as well as a mixture of peptides derived from its hydrolysis retained the ability to bind LSR in its active form. We propose then that the elevated postprandial lipemia observed upon lactoferrin treatment in vivo is mediated in part by its direct interaction with free fatty acid activated LSR, thus preventing clearance of chylomicrons and their remnants through the LSR pathway.


Assuntos
Lactoferrina/metabolismo , Lactoferrina/farmacologia , Receptores de LDL/metabolismo , Animais , Western Blotting , Bovinos , Linhagem Celular Tumoral , Quilomícrons/metabolismo , Ácidos Graxos/metabolismo , Hiperlipidemias/metabolismo , Lactoferrina/química , Lipoproteínas VLDL/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Período Pós-Prandial/efeitos dos fármacos , Triglicerídeos/sangue
10.
Proteomics ; 7(8): 1327-35, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17366489

RESUMO

Highly phosphorylated casein with a low molecular mass was isolated from Haflinger mare's milk by RP-HPLC. It accounts for 4.0% of the casein content. Its mass was determined by LC-ESI-MS before and after treatment by alkaline phosphatase. The molecular mass found for the apo-form (10,591 +/- 2 Da) is in agreement with its primary structure, which was established by ESI-MS/MS from tryptic peptides. It appeared that this short protein (94 amino acid residues) is an internally truncated form of the full-length equine beta-casein (226 residues). This low-Mr variant of equine beta-casein displays a large deletion (residues 50-181), due to a cryptic splice site usage occurring within exon 7 during the course of primary transcripts processing. The phosphorylation pattern of this equine beta-casein variant was investigated by LC-ESI-MS and 2-DE. Seven phosphorylation forms were identified with one to seven phosphate groups with pIs ranging between 4.67 and 4.01. The major isoforms carry five and six phosphate groups.


Assuntos
Sequência de Aminoácidos , Caseínas/química , Cavalos , Leite/química , Isoformas de Proteínas/química , Animais , Caseínas/genética , Caseínas/metabolismo , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Feminino , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Peptídeos/química , Peptídeos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA