RESUMO
Pancreatic adenocarcinoma (PDAC) is a rapidly progressing cancer that responds poorly to immunotherapies. Intratumoral tertiary lymphoid structures (TLS) have been associated with rare long-term PDAC survivors, but the role of TLS in PDAC and their spatial relationships within the context of the broader tumor microenvironment remain unknown. We generated a spatial multi-omics atlas encompassing 26 PDAC tumors from patients treated with combination immunotherapies. Using machine learning-enabled H&E image classification models and unsupervised gene expression matrix factorization methods for spatial transcriptomics, we characterized cellular states within TLS niches spanning across distinct morphologies and immunotherapies. Unsupervised learning generated a TLS-specific spatial gene expression signature that significantly associates with improved survival in PDAC patients. These analyses demonstrate TLS-associated intratumoral B cell maturation in pathological responders, confirmed with spatial proteomics and BCR profiling. Our study also identifies spatial features of pathologic immune responses, revealing TLS maturation colocalizing with IgG/IgA distribution and extracellular matrix remodeling. HIGHLIGHTS: Integrated multi-modal spatial profiling of human PDAC tumors from neoadjuvant immunotherapy clinical trials reveal diverse spatial niches enriched in TLS.TLS maturity is influenced by tumor location and the cellular neighborhoods in which TLS immune cells are recruited.Unsupervised machine learning of genome-wide signatures on spatial transcriptomics data characterizes the TLS-enriched TME and associates TLS transcriptomes with survival outcomes in PDAC.Interactions of spatially variable gene expression patterns showed TLS maturation is coupled with immunoglobulin distribution and ECM remodeling in pathologic responders.Intratumoral plasma cell and immunoglobin gene expression spatial dynamics demonstrate trafficking of TLS-driven humoral immunity in the PDAC TME. Significance: We report a spatial multi-omics atlas of PDAC tumors from a series of immunotherapy neoadjuvant clinical trials. Intratumorally, pathologic responders exhibit mature TLS that propagate plasma cells into malignant niches. Our findings offer insights on the role of TLS-associated humoral immunity and stromal remodeling during immunotherapy treatment.
RESUMO
Tertiary lymphoid structures (TLS) are associated with improved response in solid tumors treated with immune checkpoint blockade, but understanding of the prognostic and predictive value of TLS and the circumstances of their resolution is incomplete. Here we show that in hepatocellular carcinoma treated with neoadjuvant immunotherapy, high intratumoral TLS density at the time of surgery is associated with pathologic response and improved relapse-free survival. In areas of tumor regression, we identify a noncanonical involuted morphology of TLS marked by dispersion of the B cell follicle, persistence of a T cell zone enriched for T cell-mature dendritic cell interactions and increased expression of T cell memory markers. Collectively, these data suggest that TLS can serve as both a prognostic and predictive marker of response to immunotherapy in hepatocellular carcinoma and that late-stage TLS may support T cell memory formation after elimination of a viable tumor.
Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Estruturas Linfoides Terciárias , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Humanos , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Imunoterapia/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Terapia Neoadjuvante/métodos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Memória Imunológica , Células Dendríticas/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologiaRESUMO
Neoadjuvant immunotherapy is thought to produce long-term remissions through induction of antitumor immune responses before removal of the primary tumor. Tertiary lymphoid structures (TLS), germinal center-like structures that can arise within tumors, may contribute to the establishment of immunological memory in this setting, but understanding of their role remains limited. Here, we investigated the contribution of TLS to antitumor immunity in hepatocellular carcinoma (HCC) treated with neoadjuvant immunotherapy. We found that neoadjuvant immunotherapy induced the formation of TLS, which were associated with superior pathologic response, improved relapse free survival, and expansion of the intratumoral T and B cell repertoire. While TLS in viable tumor displayed a highly active mature morphology, in areas of tumor regression we identified an involuted TLS morphology, which was characterized by dispersion of the B cell follicle and persistence of a T cell zone enriched for ongoing antigen presentation and T cell-mature dendritic cell interactions. Involuted TLS showed increased expression of T cell memory markers and expansion of CD8+ cytotoxic and tissue resident memory clonotypes. Collectively, these data reveal the circumstances of TLS dissolution and suggest a functional role for late-stage TLS as sites of T cell memory formation after elimination of viable tumor.
RESUMO
Cryptic peptides, hidden from the immune system under physiologic conditions, are revealed by changes to MHC class II processing and hypothesized to drive the loss of immune tolerance to self-antigens in autoimmunity. Rheumatoid arthritis (RA) is an autoimmune disease characterized by immune responses to citrullinated self-antigens, in which arginine residues are converted to citrullines. Here, we investigate the hypothesis that citrullination exposes cryptic peptides by modifying protein structure and proteolytic cleavage. We show that citrullination alters processing and presentation of autoantigens, resulting in the generation of a unique citrullination-dependent repertoire composed primarily of native sequences. This repertoire stimulates T cells from RA patients with anti-citrullinated protein antibodies more robustly than controls. The generation of this unique repertoire is achieved through altered protease cleavage and protein destabilization, rather than direct presentation of citrulline-containing epitopes, suggesting a novel paradigm for the role of protein citrullination in the breach of immune tolerance in RA.
Assuntos
Artrite Reumatoide , Citrulinação , Humanos , Epitopos , Apresentação de Antígeno , Autoantígenos/metabolismo , Peptídeos/metabolismo , Citrulina/metabolismoRESUMO
Pancreatic ductal adenocarcinoma (PDA) is accompanied by reprogramming of the local microenvironment, but changes at distal sites are poorly understood. We implanted biomaterial scaffolds, which act as an artificial premetastatic niche, into immunocompetent tumor-bearing and control mice, and identified a unique tumor-specific gene expression signature that includes high expression of C1qa, C1qb, Trem2, and Chil3 Single-cell RNA sequencing mapped these genes to two distinct macrophage populations in the scaffolds, one marked by elevated C1qa, C1qb, and Trem2, the other with high Chil3, Ly6c2 and Plac8 In mice, expression of these genes in the corresponding populations was elevated in tumor-associated macrophages compared with macrophages in the normal pancreas. We then analyzed single-cell RNA sequencing from patient samples, and determined expression of C1QA, C1QB, and TREM2 is elevated in human macrophages in primary tumors and liver metastases. Single-cell sequencing analysis of patient blood revealed a substantial enrichment of the same gene signature in monocytes. Taken together, our study identifies two distinct tumor-associated macrophage and monocyte populations that reflects systemic immune changes in pancreatic ductal adenocarcinoma patients.
Assuntos
Monócitos/metabolismo , Neoplasias Pancreáticas/metabolismo , Macrófagos Associados a Tumor/metabolismo , Adulto , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proteínas de Transporte , Complemento C1q , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptores de Complemento , Receptores Imunológicos/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma/genética , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/fisiologia , Neoplasias PancreáticasRESUMO
BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy that invades surrounding structures and metastasizes rapidly. Although inflammation is associated with tumor formation and progression, little is known about the mechanisms of this connection. We investigate the effects of interleukin (IL) 22 in the development of pancreatic tumors in mice. METHODS: We performed studies with Pdx1-Cre;LSL-KrasG12D;Trp53+/-;Rosa26EYFP/+ (PKCY) mice, which develop pancreatic tumors, and PKCY mice with disruption of IL22 (PKCY Il22-/-mice). Pancreata were collected at different stages of tumor development and analyzed by immunohistochemistry, immunoblotting, real-time polymerase chain reaction, and flow cytometry. Some mice were given cerulean to induce pancreatitis. Pancreatic cancer cell lines (PD2560) were orthotopically injected into C57BL/6 mice or Il22-/-mice, and tumor development was monitored. Pancreatic cells were injected into the tail veins of mice, and lung metastases were quantified. Acini were collected from C57BL/6 mice and resected human pancreata and were cultured. Cell lines and acini cultures were incubated with IL22 and pharmacologic inhibitors, and protein levels were knocked down with small hairpin RNAs. We performed immunohistochemical analyses of 26 PDACs and 5 nonneoplastic pancreas specimens. RESULTS: We observed increased expression of IL22 and the IL22 receptor (IL22R) in the pancreas compared with other tissues in mice; IL22 increased with pancreatitis and tumorigenesis. Flow cytometry indicated that the IL22 was produced primarily by T-helper 22 cells. PKCY Il22-/-mice did not develop precancerous lesions or pancreatic tumors. The addition of IL22 to cultured acinar cells increased their expression of markers of ductal metaplasia; these effects of IL22 were prevented with inhibitors of Janus kinase signaling to signal transducer and activator of transcription (STAT) (ruxolitinib) or mitogen-activated protein kinase kinase (MEK) (trametinib) and with STAT3 knockdown. Pancreatic cells injected into Il22-/- mice formed smaller tumors than those injected into C57BL/6. Incubation of IL22R-expressing PDAC cells with IL22 promoted spheroid formation and invasive activity, resulting in increased expression of stem-associated transcription factors (GATA4, SOX2, SOX17, and NANOG), and increased markers of the epithelial-mesenchymal transition (CDH1, SNAI2, TWIST1, and beta catenin); ruxolitinib blocked these effects. Human PDAC tissues had higher levels of IL22, phosphorylated STAT3, and markers of the epithelial-mesenchymal transition than nonneoplastic tissues. An increased level of STAT3 in IL22R-positive cells was associated with shorter survival times of patients. CONCLUSIONS: We found levels of IL22 to be increased during pancreatitis and pancreatic tumor development and to be required for tumor development and progression in mice. IL22 promotes acinar to ductal metaplasia, stem cell features, and increased expression of markers of the epithelial-mesenchymal transition; inhibitors of STAT3 block these effects. Increased expression of IL22 by PDACs is associated with reduced survival times.
Assuntos
Células Acinares/patologia , Carcinoma Ductal Pancreático/imunologia , Transformação Celular Neoplásica/imunologia , Interleucinas/metabolismo , Neoplasias Pancreáticas/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Células Acinares/imunologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral/transplante , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/imunologia , Transformação Celular Neoplásica/efeitos dos fármacos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/imunologia , Feminino , Células HEK293 , Humanos , Interleucinas/imunologia , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Masculino , Metaplasia/imunologia , Metaplasia/patologia , Camundongos , Camundongos Knockout , Nitrilas , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Pancreatite/imunologia , Pancreatite/patologia , Pirazóis/farmacologia , Piridonas/farmacologia , Pirimidinas , Pirimidinonas/farmacologia , RNA Interferente Pequeno/metabolismo , Receptores de Interleucina/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Interleucina 22RESUMO
Heparin is the only well-established anticoagulant medication for cardiopulmonary bypass making selecting an alternative anticoagulant challenging in patients with heparin-induced thrombocytopenia. Other anticoagulant medications can cause significant postoperative bleeding, especially in patients with end-stage renal disease. We present a case of a 63-year-old woman requiring aortic valve replacement with a history of heparin-induced thrombocytopenia and end-stage renal disease. Cangrelor and heparin were successfully used during cardiopulmonary bypass, offering an option for anticoagulation management for a uniquely challenging patient population.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Ponte Cardiopulmonar/métodos , Heparina/administração & dosagem , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/uso terapêutico , Feminino , Implante de Prótese de Valva Cardíaca , Heparina/efeitos adversos , Humanos , Cuidados Intraoperatórios , Falência Renal Crônica/complicações , Pessoa de Meia-Idade , Trombocitopenia/induzido quimicamente , Resultado do TratamentoRESUMO
Paramount to the efficacy of immune checkpoint inhibitors is proper selection of patients with adequate tumor immunogenicity and a robust but suppressed immune infiltrate. In colon cancer, immune-based therapies are approved for patients with DNA mismatch repair (MMR) deficiencies, in whom accumulation of genetic mutations results in increased neoantigen expression, triggering an immune response that is suppressed by the PD-L1/PD-1 pathway. Here, we report that characterization of the microenvironment of MMR-deficient metastatic colorectal cancer using multiplex fluorescent immunohistochemistry (mfIHC) identified increased infiltration of cytotoxic T lymphocytes (CTLs), which were more often engaged with epithelial cells (ECs) and improved overall survival. A subset of patients with intact MMR but a similar immune microenvironment to MMR-deficient patients was identified and found to universally express high levels of PD-L1, suggesting that they may represent a currently untreated, checkpoint inhibitor-responsive population. Further, PD-L1 expression on antigen-presenting cells (APCs) in the tumor microenvironment (TME) resulted in impaired CTL/EC engagement and enhanced infiltration and engagement of Tregs. Characterization of the TME by mfIHC highlights the interconnection between immunity and immunosuppression in metastatic colon cancer and may better stratify patients for receipt of immunotherapies.