Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 871, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286982

RESUMO

Ammonia is a storage molecule for hydrogen, which can be released by catalytic decomposition. Inexpensive iron catalysts suffer from a low activity due to a too strong iron-nitrogen binding energy compared to more active metals such as ruthenium. Here, we show that this limitation can be overcome by combining iron with cobalt resulting in a Fe-Co bimetallic catalyst. Theoretical calculations confirm a lower metal-nitrogen binding energy for the bimetallic catalyst resulting in higher activity. Operando spectroscopy reveals that the role of cobalt in the bimetallic catalyst is to suppress the bulk-nitridation of iron and to stabilize this active state. Such catalysts are obtained from Mg(Fe,Co)2O4 spinel pre-catalysts with variable Fe:Co ratios by facile co-precipitation, calcination and reduction. The resulting Fe-Co/MgO catalysts, characterized by an extraordinary high metal loading reaching 74 wt.%, combine the advantages of a ruthenium-like electronic structure with a bulk catalyst-like microstructure typical for base metal catalysts.

2.
Chemistry ; 26(50): 11571-11583, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32428318

RESUMO

A systematic variation of the SBA-15 synthesis conditions and their impact on the structural and chemical characteristics are reported. An incremental alteration of the hydrothermal aging temperature and time was used to induce changes of the highly ordered SBA-15 structure. Any effects on the total surface area, mesopores size, micropore contributions, and pore connectivity are amplified by a combined incremental increase of the NH4 F concentration. Based on changes of the unit-cell parameter as a function of the mesopore size, and a feature in the low-angle XRD pattern, useful descriptors for the disorder of the corresponding SBA-15 are identified. An additional analysis of the Brunauer-Emmett-Teller (BET) surface area and pore size distributions enables investigations of the structural integrity of the material. This systematic approach allows the identification of coherencies between the evolution of physical SBA-15 properties. The obtained correlations of the surface and structural characteristics allow the discrimination between highly ordered 2D SBA-15, disordered 3D SBA-15, and highly nonuniform silica fractions with mainly amorphous character. The fluoride-induced disintegration of the silica structure under hydrothermal conditions was also verified by TEM. A direct influence of the structural adaption on the chemical properties of the surface was demonstrated by isopropanol conversion and H/D exchange monitored by FTIR analysis as sensitive probes for acid and redox active surface sites.

3.
Angew Chem Int Ed Engl ; 55(41): 12708-12, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27607344

RESUMO

Long-term stability of catalysts is an important factor in the chemical industry. This factor is often underestimated in academic testing methods, which may lead to a time gap in the field of catalytic research. The deactivation behavior of an industrially relevant Cu/ZnO/Al2 O3 catalyst for the synthesis of methanol is reported over a period of 148 days time-on-stream (TOS). The process was investigated by a combination of quasi in situ and ex situ analysis techniques. The results show that ZnO is the most dynamic species in the catalyst, whereas only slight changes can be observed in the Cu nanoparticles. Thus, the deactivation of this catalyst is driven by the changes in the ZnO moieties. Our findings indicate that methanol synthesis is an interfacially mediated process between Cu and ZnO.

4.
Phys Rev Lett ; 104(3): 035503, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366656

RESUMO

Combining first-principles calculations and in situ photoelectron spectroscopy, we show how the composition and structure of the surface of an alloy catalyst is affected by the temperature and pressure of the reagents. The Ag-Cu alloy, recently proposed as an improved catalyst for ethylene epoxidation, forms a thin Cu-O surface oxide, while a Ag-Cu surface alloy is found not to be stable. Several possible surface structures are identified, among which the catalyst surface is likely to dynamically evolve under reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA