Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 266: 120436, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120199

RESUMO

There is increasing evidence that surface curvature at a near-cell-scale influences cell behaviour. Epithelial or endothelial cells lining small acinar or tubular body lumens, as those of the alveoli or blood vessels, experience such highly curved surfaces. In contrast, the most commonly used culture substrates for in vitro modelling of these human tissue barriers, ion track-etched membranes, offer only flat surfaces. Here, we propose a more realistic culture environment for alveolar cells based on biomimetically curved track-etched membranes, preserving the mainly spherical geometry of the cells' native microenvironment. The curved membranes were created by a combination of three-dimensional (3D) micro film (thermo)forming and ion track technology. We could successfully demonstrate the formation, the growth and a first characterization of confluent layers of lung epithelial cell lines and primary alveolar epithelial cells on membranes shaped into an array of hemispherical microwells. Besides their application in submerged culture, we could also demonstrate the compatibility of the bioinspired membranes for air-exposed culture. We observed a distinct cellular response to membrane curvature. Cells (or cell layers) on the curved membranes reveal significant differences compared to cells on flat membranes concerning membrane epithelialization, areal cell density of the formed epithelial layers, their cross-sectional morphology, and proliferation and apoptosis rates, and the same tight barrier function as on the flat membranes. The presented 3D membrane technology might pave the way for more predictive barrier in vitro models in future.


Assuntos
Células Endoteliais , Alvéolos Pulmonares , Estudos Transversais , Células Epiteliais , Humanos , Membranas
2.
Sci Adv ; 5(5): eaaw1317, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31131324

RESUMO

Awareness that traditional two-dimensional (2D) in vitro and nonrepresentative animal models may not completely emulate the 3D hierarchical complexity of tissues and organs is on the rise. Therefore, posterior translation into successful clinical application is compromised. To address this dearth, on-chip biomimetic microenvironments powered by microfluidic technologies are being developed to better capture the complexity of in vivo pathophysiology. Here, we describe a "tumor-on-a-chip" model for assessment of precision nanomedicine delivery on which we validate the efficacy of drug-loaded nanoparticles in a gradient fashion. The model validation was performed by viability studies integrated with live imaging to confirm the dose-response effect of cells exposed to the CMCht/PAMAM nanoparticle gradient. This platform also enables the analysis at the gene expression level, where a down-regulation of all the studied genes (MMP-1, Caspase-3, and Ki-67) was observed. This tumor-on-chip model represents an important development in the use of precision nanomedicine toward personalized treatment.


Assuntos
Neoplasias Colorretais/diagnóstico , Dispositivos Lab-On-A-Chip , Nanomedicina/métodos , Medicina de Precisão/métodos , Biomimética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Cocultura , Neoplasias Colorretais/metabolismo , Dendrímeros/química , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Imageamento Tridimensional , Antígeno Ki-67/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Microfluídica , Nanopartículas/química
3.
Lab Chip ; 8(9): 1570-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18818815

RESUMO

This paper presents a fundamentally new approach for the manufacturing and the possible applications of lab on a chip devices, mainly in the form of disposable fluidic microchips for life sciences applications. The new technology approach is based on a novel microscale thermoforming of thin polymer films as core process. The flexibility not only of the semi-finished but partly also of the finished products in the form of film chips could enable future reel to reel processes in production but also in application. The central so-called 'microthermoforming' process can be surrounded by pairs of associated pre- and postprocesses for micro- and nanopatterned surface and bulk modification or functionalisation of the formed films. This new approach of microscale thermoforming of thin polymer film substrates overlaid with a split local modification of the films is called 'SMART', which stands for 'substrate modification and replication by thermoforming'. In the process, still on the unformed, plane film, the material modifications of the preprocess define the locations where later, then on the spatially formed film, the postprocess generates the final local modifications. So, one can obtain highly resolved modification patterns also on hardly accessible side walls and even behind undercuts. As a first application of the new technology, we present a flexible chip-sized scaffold for three dimensional cell cultivation in the form of a microcontainer array. The spatially warped container walls have been provided with micropores, cell adhesion micropatterns and thin film microelectrodes.


Assuntos
Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Polímeros/química , Temperatura , Adesão Celular , Linhagem Celular Tumoral , Humanos , Microeletrodos , Microscopia Eletrônica de Varredura , Porosidade
4.
Biomed Mater ; 3(3): 034120, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18765895

RESUMO

We describe a polymer chip with a grid-like architecture that it is intended for the three-dimensional cultivation of cells with an active nutrient and gas supply. The chip is typically made from polymethyl methacrylate or polycarbonate but can also be manufactured from biodegradable polymers, such as poly(lactic-co-glycolic acid). Different designs of the chip can be realized. In this study, we evaluated a chip with 506 microcontainers of the size of 300 x 300 x 300 microm that are capable of housing up to 6 million cells, and its suitability as a tissue-specific culture system for the carcinoma cell line HepG2 instead of primary liver cells. Related to an earlier study, where we could show the principal suitability of the system for rat primary cells, we here investigated the system's suitability for the human carcinoma cell line HepG2. The carcinoma cells were used in two different types of chip-containing bioreactors. By confocal laser scanning microscopy, we could show that cellular integrity in the chip culture was maintained and that there were no signs of apoptosis as confirmed by the absence of K18 fragmentation. Gene expression analysis of some liver-specific genes revealed a significantly higher expression of the phase II metabolism genes uridine-diphosphate- glucosyl-transferase (UGT1A1) and glutathione-S-transferase (GSTpi1) as a marker. Therefore, we conclude that by using a three-dimensional instead of a conventional monolayer culture system, hepatocellular carcinoma cells display a phenotype that resembles more closely the tissue of origin.


Assuntos
Carcinoma Hepatocelular/patologia , Técnicas de Cultura de Células/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Perfusão/instrumentação , Engenharia Tecidual/instrumentação , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/métodos , Perfusão/métodos , Engenharia Tecidual/métodos
5.
Biomed Microdevices ; 8(3): 191-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16718404

RESUMO

We describe a new technology based on thermoforming as a microfabrication process. It significantly enhances the tailoring of polymers for three dimensional tissue engineering purposes since for the first time highly resolved surface and bulk modifications prior to a microstructuring process can be realised. In contrast to typical micro moulding techniques, the melting phase is avoided and thus allows the forming of pre-processed polymer films. The polymer is formed in a thermoelastic state without loss of material coherence. Therefore, previously generated modifications can be preserved. To prove the feasibility of our newly developed technique, so called SMART = Substrate Modification And Replication by Thermoforming, polymer films treated by various polymer modification methods, like UV-based patterned films, and films modified by the bombardment with energetic heavy ions, were post-processed by microthermoforming. The preservation of locally applied specific surface and bulk features was demonstrated e.g. by the selective adhesion of cells to patterned microcavity walls.


Assuntos
Materiais Biocompatíveis , Técnicas de Cultura de Células , Teste de Materiais , Cimento de Policarboxilato , Poliestirenos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA