Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 6: 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566253

RESUMO

Conventional central chondrosarcoma (CCC) is a malignant bone tumor that is characterized by the production of chondroid tissue. Since radiation therapy and chemotherapy have limited effects on CCC, treatment of most patients depends on surgical resection. This study aimed to identify the expression profiles of microRNAs (miRNAs) and isomiRs in CCC tissues to highlight their possible participation to the regulation of pathways critical for the formation and growth of this type of tumor. Our study analyzed miRNAs and isomiRs from Grade I (GI), Grade II (GII), and Grade III (GIII) histologically validated CCC tissue samples. While the different histological grades shared a similar expression profile for the top abundant miRNAs, we found several microRNAs and isomiRs showing a strong different modulation in GII + GIII vs GI grade samples and their involvement in tumor biology could be consistently hypothesized. We then in silico validated these differently expressed miRNAs in a larger chondrosarcoma public dataset and confirmed the expression trend for 17 out of 34 miRNAs. Our results clearly suggests that the contribution of miRNA deregulation, and their targeted pathways, to the progression of CCC could be relevant and strongly indicates that when studying miRNA deregulation in tumors, not only the canonical miRNAs, but the whole set of corresponding isomiRs should be taken in account. Improving understanding of the precise roles of miRNAs and isomiRs over the course of central chondrosarcoma progression could help identifying possible targets for precision medicine therapeutic intervention.

2.
PLoS One ; 15(3): e0229914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163452

RESUMO

Mesenchymal stromal/stem cells (MSCs) are increasingly employed for tissue regeneration, largely mediated through paracrine actions. Currently, extracellular vesicles (EVs) released by MSCs are major mediators of these paracrine effects. We evaluated whether rat-bone-marrow-MSC-derived EVs (rBMSCs-EVs) can ameliorate tendon injury in an in vivo rat model. Pro-collagen1A2 and MMP14 protein are expressed in rBMSC-EVs, and are important factors for extracellular-matrix tendon-remodeling. In addition, we found pro-collagen1A2 in rBMSC-EV surface-membranes by dot blot. In vitro on cells isolated from Achilles tendons, utilized as rBMSC -EVs recipient cells, EVs at both low and high doses induce migration of tenocytes; at higher concentration, they induce proliferation and increase expression of Collagen type I in tenocytes. Pretreatment with trypsin abrogate the effect of EVs on cell proliferation and migration, and the expression of collagen I. When either low- or high-dose rBMSCs-EVs were injected into a rat-Achilles tendon injury-model (immediately after damage), at 30 days, rBMSC-EVs were found to have accelerated the remodeling stage of tendon repair in a dose-dependent manner. At histology and histomorphology evaluation, high doses of rBMSCs-EVs produced better restoration of tendon architecture, with optimal tendon-fiber alignment and lower vascularity. Higher EV-concentrations demonstrated greater expression of collagen type I and lower expression of collagen type III. BMSC-EVs hold promise as a novel cell-free modality for the management of tendon injuries.


Assuntos
Tendão do Calcâneo/lesões , Vesículas Extracelulares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Traumatismos dos Tendões/terapia , Tendão do Calcâneo/patologia , Animais , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Projetos Piloto , Ratos , Traumatismos dos Tendões/patologia , Cicatrização
3.
J Orthop Surg Res ; 14(1): 54, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777116

RESUMO

BACKGROUND: This pilot study aimed to ascertain whether the local application of ascorbic acid (AA), of T3, and of rat (r) bone marrow mesenchymal stem cells (BMSCs), alone or in all possible combinations, promoted healing after an Achilles tendon injury in a rat model. METHODS: An Achilles tendon defect was produced in 24 6-8-week-old male inbred Lewis rats. The animals were then randomly divided into eight groups of three rats each. The tendon defect was filled with 50 µL of phosphate-buffered saline (PBS) containing (1) 50 µg/mL AA (AA group), (2) 10-7 M T3 (T3 group), (3) 4 × 106 rBMSCs (rBMSC group), (4) 50 µg/mL AA + 10-7 M T3 (AA + T3 group), (5) 4 × 106 rBMSCs + 50 µg/mL AA (rBMSC + AA group), (6) 4 × 106 rBMSCs + 10-7 M T3 (rBMSC + T3 group), (7) 4 × 106 rBMSCS + 50 µg/mL AA + 10-7 M T3 (rBMSC + AA + T3 group), and (8) PBS only (control group: CTRL). All treatments were administered by local injection immediately after the tendons had been damaged; additionally, AA was injected also on the second and fourth day from the first injection (for groups 1, 4, 5, and 7), and T3 was injected again every day for 4 days (for groups 2, 4, 6, and 7). At 30 days from initial treatment, tendon samples were harvested, and the quality of tendon repair was evaluated using histological and histomorphological analysis. The structure and morphology of the injured Achilles tendons were evaluated using the modified Svensson, Soslowsky, and Cook score, and the collagen type I and III ratio was calculated. RESULTS: The group treated with AA combined with T3 displayed the lowest Svensson, Soslowsky, and Cook total score value of all tissue sections at histopathological examination, with fiber structure close to regular orientation, normal-like tendon vasculature, and no cartilage formation. AA + T3 also showed the highest collagen I and the lowest collagen III values compared to all other treatments including the CTRL. CONCLUSION: There are potential benefits using a combination of AA and T3 to accelerate tendon healing.


Assuntos
Tendão do Calcâneo/lesões , Ácido Ascórbico/administração & dosagem , Transplante de Células-Tronco Mesenquimais/métodos , Estudo de Prova de Conceito , Ruptura/terapia , Tri-Iodotironina/administração & dosagem , Tendão do Calcâneo/efeitos dos fármacos , Tendão do Calcâneo/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Quimioterapia Combinada , Masculino , Projetos Piloto , Ratos , Ratos Endogâmicos Lew , Ruptura/patologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
4.
Oncotarget ; 8(47): 82920-82939, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137313

RESUMO

Liver cancer (LC) is one of the most common cancers and represents the third highest cause of cancer-related deaths worldwide. Extracellular vesicle (EVs) cargoes, which are selectively enriched in RNA, offer great promise for the diagnosis, prognosis and treatment of LC. Our study analyzed the RNA cargoes of EVs derived from 4 liver-cancer cell lines: HuH7, Hep3B, HepG2 (hepato-cellular carcinoma) and HuH6 (hepatoblastoma), generating two different sets of sequencing libraries for each. One library was size-selected for small RNAs and the other targeted the whole transcriptome. Here are reported genome wide data of the expression level of coding and non-coding transcripts, microRNAs, isomiRs and snoRNAs providing the first comprehensive overview of the extracellular-vesicle RNA cargo released from LC cell lines. The EV-RNA expression profiles of the four liver cancer cell lines share a similar background, but cell-specific features clearly emerge showing the marked heterogeneity of the EV-cargo among the individual cell lines, evident both for the coding and non-coding RNA species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA