Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113081

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.


Assuntos
Neurônios Motores , Primatas , Ratos , Camundongos , Animais , Neurônios Motores/fisiologia , Eletrodos , Fibras Musculares Esqueléticas
2.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36865176

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ("Myomatrix arrays") that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a "motor unit", during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.

3.
J Neurosci Methods ; 222: 199-206, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24269175

RESUMO

BACKGROUND: Rodents are important model systems used to explore spinal cord injury (SCI) and rehabilitation, and brain machine interfaces (BMI). We present a new method to provide mechanical interaction for BMI and rehabilitation in rat models of SCI. NEW METHOD: We present the design and implantation procedures for a pelvic orthosis that allows direct force application to the skeleton in brain machine interface and robot rehabilitation applications in rodents. We detail the materials, construction, machining, surgery and validation of the device. RESULTS: We describe the statistical validation of the implant procedures by comparing stepping parameters of 8 rats prior to and after implantation and surgical recovery. An ANOVA showed no effects of the implantation on stepping. Paired tests in the individual rats also showed no effect in 7/8 rats and minor effects in the last rat, within the group's variance. COMPARISON WITH EXISTING METHODS: Our method allows interaction with rats at the pelvis without any perturbation of normal stepping in the intact rat. The method bypasses slings, and cuffs, avoiding cuff or slings squeezing the abdomen, or other altered sensory feedback. Our implant osseointegrates, and thus allows an efficient high bandwidth mechanical coupling to a robot. The implants support quadrupedal training and are readily integrated into either treadmill or overground contexts. CONCLUSIONS: Our novel device and procedures support a range of novel experimental designs and motor tests for rehabilitative and augmentation devices in intact and SCI model rats, with the advantage of allowing direct force application at the pelvic bones.


Assuntos
Interfaces Cérebro-Computador , Implantes Experimentais , Aparelhos Ortopédicos , Pelve , Traumatismos da Medula Espinal/reabilitação , Análise de Variância , Animais , Fenômenos Biomecânicos , Feminino , Membro Posterior/fisiopatologia , Articulação do Quadril/fisiopatologia , Implantes Experimentais/efeitos adversos , Articulações/fisiopatologia , Locomoção/fisiologia , Procedimentos Ortopédicos , Aparelhos Ortopédicos/efeitos adversos , Pelve/patologia , Pelve/cirurgia , Ratos , Ratos Sprague-Dawley , Robótica , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA