Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1331210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464529

RESUMO

Introduction: Microglia and macrophages can influence the evolution of myelin lesions through the production of extracellular vesicles (EVs). While microglial EVs promote in vitro differentiation of oligodendrocyte precursor cells (OPCs), whether EVs derived from macrophages aid or limit OPC maturation is unknown. Methods: Immunofluorescence analysis for the myelin protein MBP was employed to evaluate the impact of EVs from primary rat macrophages on cultured OPC differentiation. Raman spectroscopy and liquid chromatography-mass spectrometry was used to define the promyelinating lipid components of myelin EVs obtained in vitro and isolated from human plasma. Results and discussion: Here we show that macrophage-derived EVs do not promote OPC differentiation, and those released from macrophages polarized towards an inflammatory state inhibit OPC maturation. However, their lipid cargo promotes OPC maturation in a similar manner to microglial EVs. We identify the promyelinating endocannabinoids anandamide and 2-arachidonoylglycerol in EVs released by both macrophages and microglia in vitro and circulating in human plasma. Analysis of OPC differentiation in the presence of the endocannabinoid receptor antagonists SR141716A and AM630 reveals a key role of vesicular endocannabinoids in OPC maturation. From this study, EV-associated endocannabinoids emerge as important mediators in microglia/macrophage-oligodendrocyte crosstalk, which may be exploited to enhance myelin repair.


Assuntos
Vesículas Extracelulares , Microglia , Ratos , Animais , Humanos , Microglia/metabolismo , Endocanabinoides/metabolismo , Macrófagos , Oligodendroglia/metabolismo
2.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895074

RESUMO

Glioblastoma multiforme (GBM) is the most frequent and deadly brain tumor. Many sphingolipids are crucial players in the regulation of glioma cell growth as well as in the response to different chemotherapeutic drugs. In particular, ceramide (Cer) is a tumor suppressor lipid, able to induce antiproliferative and apoptotic responses in different types of tumors including GBM, most of which overexpress the epidermal growth factor receptor variant III (EGFRvIII). In this paper, we investigated whether Cer metabolism is altered in the U87MG human glioma cell line overexpressing EGFRvIII (EGFR+ cells) to elucidate their possible interplay in the mechanisms regulating GBM survival properties and the response to the alkylating agent temozolomide (TMZ). Notably, we demonstrated that a low dose of TMZ significantly increases Cer levels in U87MG cells but slightly in EGFR+ cells (sensitive and resistant to TMZ, respectively). Moreover, the inhibition of the synthesis of complex sphingolipids made EGFR+ cells sensitive to TMZ, thus involving Cer accumulation/removal in TMZ resistance of GBM cells. This suggests that the enhanced resistance of EGFR+ cells to TMZ is dependent on Cer metabolism. Altogether, our results indicate that EGFRvIII expression confers a TMZ-resistance phenotype to U87MG glioma cells by counteracting Cer increase.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Ceramidas , Receptores ErbB/metabolismo , Glioma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
3.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983059

RESUMO

Autophagic impairment was identified in many lysosomal storage diseases and adult neurodegenerative diseases. It seems that this defect could be directly related to the appearance of a neurodegenerative phenotype and could contribute to worsen metabolite accumulation and lysosomal distress. Thus, autophagy is becoming a promising target for supportive therapies. Autophagy alterations were recently identified also in Krabbe disease. Krabbe disease is characterized by extensive demyelination and dysmyelination and it is due to the genetic loss of function of the lysosomal enzyme galactocerebrosidase (GALC). This enzyme leads to the accumulation of galactosylceramide, psychosine, and secondary substrates such as lactosylceramide. In this paper, we induced autophagy through starvation and examined the cellular response occurring in fibroblasts isolated from patients. We demonstrated that the inhibitory AKT-mediated phosphorylation of beclin-1 and the BCL2-beclin-1 complex concur to reduce autophagosomes formation in response to starvation. These events were not dependent on the accumulation of psychosine, which was previously identified as a possible player in autophagic impairment in Krabbe disease. We believe that these data could better elucidate the capability of response to autophagic stimuli in Krabbe disease, in order to identify possible molecules able to stimulate the process.


Assuntos
Leucodistrofia de Células Globoides , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Psicosina , Fosforilação , Autofagia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
Int J Biochem Cell Biol ; 145: 106184, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217188

RESUMO

Galactocerebrosidase (GALC) hydrolyses galactose residues from various substrates, including galactosylceramide, psychosine (galactosylsphingosine), and lactosylceramide. Its severe deficiency has been associated with the accumulation of psychosine, a toxic molecule with detergent-like features, which alters membrane structures and signalling pathways, inducing the death of oligodendrocytes and a sequence of events in the nervous system that explain the appearance of many clinical signs typical of Krabbe disease. Nevertheless, new evidence suggests the existence of other possible links among GALC action, myelination, and myelin stability, apart from psychosine release. In this study, we demonstrated that lactosylceramide metabolism is impaired in fibroblasts isolated from patients with Krabbe disease in the absence of psychosine accumulation. This event is responsible for the aberrant and constitutive activation of the AKT/prolin-rich AKT substrate of 40 kDa (PRAS40) signalling axis, inducing B cell lymphoma 2 (BCL2) overexpression and glycogen synthase kinase 3 beta (GSK-3ß) inhibition. In addition, nuclear factor E2-related factor 2 (NRF2) showed increased nuclear translocation. Due to the relevance of these molecular alterations in neurodegeneration, lactosylceramide increase should be evaluated as a novel marker of Krabbe disease, and because of its significant connections with signalling pathways.


Assuntos
Lactosilceramidas , Leucodistrofia de Células Globoides , Proteínas Adaptadoras de Transdução de Sinal , Glicogênio Sintase Quinase 3 beta , Humanos , Lactosilceramidas/metabolismo , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Psicosina/metabolismo
5.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204326

RESUMO

Immunotherapy is now considered an innovative and strong strategy to beat metastatic, drug-resistant, or relapsing tumours. It is based on the manipulation of several mechanisms involved in the complex interplay between cancer cells and immune system that culminates in a form of immune-tolerance of tumour cells, favouring their expansion. Current immunotherapies are devoted enforcing the immune response against cancer cells and are represented by approaches employing vaccines, monoclonal antibodies, interleukins, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cells. Despite the undoubted potency of these treatments in some malignancies, many issues are being investigated to amplify the potential of application and to avoid side effects. In this review, we discuss how sphingolipids are involved in interactions between cancer cells and the immune system and how knowledge in this topic could be employed to enhance the efficacy of different immunotherapy approaches. In particular, we explore the following aspects: how sphingolipids are pivotal components of plasma membranes and could modulate the functionality of surface receptors expressed also by immune cells and thus their functionality; how sphingolipids are related to the release of bioactive mediators, sphingosine 1-phosphate, and ceramide that could significantly affect lymphocyte egress and migration toward the tumour milieu, in addition regulating key pathways needed to activate immune cells; given the renowned capability of altering sphingolipid expression and metabolism shown by cancer cells, how it is possible to employ sphingolipids as antigen targets.


Assuntos
Imunomodulação , Neoplasias/imunologia , Neoplasias/metabolismo , Esfingolipídeos/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Comunicação Celular , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Lisofosfolipídeos/metabolismo , Neoplasias/terapia , Transdução de Sinais , Esfingolipídeos/química , Esfingolipídeos/imunologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Resultado do Tratamento
6.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201962

RESUMO

Sphingosine-1-phosphate (S1P) is a crucial mediator involved in the progression of different cancers, including glioblastoma multiforme (GBM), the most frequent and deadly human brain tumor, characterized by extensive invasiveness and rapid cell growth. Most of GBMs overexpress the epidermal growth factor receptor (EGFR), and we investigated the possible link between S1P and EGFR signaling pathways, focusing on its role in GBM survival, using the U87MG human cell line overexpressing EGFR (EGFR+). We previously demonstrated that EGFR+ cells have higher levels of extracellular S1P and increased sphingosine kinase-1 (SK1) activity than empty vector expressing cells. Notably, we demonstrated that EGFR+ cells are resistant to temozolomide (TMZ), the standard chemotherapeutic drug in GBM treatment, and the inhibition of SK1 or S1P receptors made EGFR+ cells sensitive to TMZ; moreover, exogenous S1P reverted this effect, thus involving extracellular S1P as a survival signal in TMZ resistance in GBM cells. In addition, both PI3K/AKT and MAPK inhibitors markedly reduced cell survival, suggesting that the enhanced resistance to TMZ of EGFR+ cells is dependent on the increased S1P secretion, downstream of the EGFR-ERK-SK1-S1P pathway. Altogether, our study provides evidence of a functional link between S1P and EGFR signaling pathways enhancing the survival properties of GBM cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingosina/metabolismo
7.
Methods Mol Biol ; 2187: 1-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32770498

RESUMO

Lipid rafts are membrane areas characterized by the clustering of selected membrane lipids, as the result of their phase separation forming a liquid-ordered phase floating in the lipid-disordered bulk membrane. van Meer and Simons hypothesized the existence of lipid rafts to explain the differential composition of the apical and basolateral domains of polarized epithelial cells and proposed that association of given proteins with lipid rafts along the traffic route might represent an important mechanism for protein sorting. However, great attention was paid to the lipid raft theory after Simons and Ikonen highlighted the enrichment of several proteins involved in signal transduction in "detergent-insoluble, glycolipid-enriched complexes," and postulated that lipid rafts might serve as hubs in regulating intracellular signaling. Most notably, the feature of detergent-insolubility was incorporated in the definition of lipid rafts used in 1997 by these authors. "Lipid rafts" and "detergent-resistant membranes" became almost synonymous after the publication, in 1992, of the seminal paper by Brown and Rose, describing the separation of a low-density, Triton X-100-insoluble fraction from epithelial cells, enriched in GSL and apical GPI-anchored proteins and depleted of basolateral membrane marker proteins. This paper provided a working definition of lipid rafts and a putative biochemical method for their separation. More than 2000 papers have been published using "the Triton method." Evidences obtained by the use of alternative biochemical methods for the isolation of lipid rafts and of methods enabling to analyze the dynamics of lipid rafts in intact cells highlighted the several limitations of the Triton X-100 method. On the other hand, the main findings obtained by this method have not been confuted, and the method is still widely used.In this chapter, we will discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, with a special focus on neural cells and tissues.


Assuntos
Lipídeos de Membrana/química , Microdomínios da Membrana/química , Neurônios/química , Animais , Biomarcadores/química , Bovinos , Membrana Celular/química , Detergentes/química , Células Epiteliais/química , Camundongos , Octoxinol/química , Transporte Proteico/fisiologia , Ratos , Transdução de Sinais/fisiologia , Solubilidade
8.
Acta Neuropathol ; 138(6): 987-1012, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31363836

RESUMO

Microglia are highly plastic immune cells which exist in a continuum of activation states. By shaping the function of oligodendrocyte precursor cells (OPCs), the brain cells which differentiate to myelin-forming cells, microglia participate in both myelin injury and remyelination during multiple sclerosis. However, the mode(s) of action of microglia in supporting or inhibiting myelin repair is still largely unclear. Here, we analysed the effects of extracellular vesicles (EVs) produced in vitro by either pro-inflammatory or pro-regenerative microglia on OPCs at demyelinated lesions caused by lysolecithin injection in the mouse corpus callosum. Immunolabelling for myelin proteins and electron microscopy showed that EVs released by pro-inflammatory microglia blocked remyelination, whereas EVs produced by microglia co-cultured with immunosuppressive mesenchymal stem cells promoted OPC recruitment and myelin repair. The molecular mechanisms responsible for the harmful and beneficial EV actions were dissected in primary OPC cultures. By exposing OPCs, cultured either alone or with astrocytes, to inflammatory EVs, we observed a blockade of OPC maturation only in the presence of astrocytes, implicating these cells in remyelination failure. Biochemical fractionation revealed that astrocytes may be converted into harmful cells by the inflammatory EV cargo, as indicated by immunohistochemical and qPCR analyses, whereas surface lipid components of EVs promote OPC migration and/or differentiation, linking EV lipids to myelin repair. Although the mechanisms through which the lipid species enhance OPC maturation still remain to be fully defined, we provide the first demonstration that vesicular sphingosine 1 phosphate stimulates OPC migration, the first fundamental step in myelin repair. From this study, microglial EVs emerge as multimodal and multitarget signalling mediators able to influence both OPCs and astrocytes around myelin lesions, which may be exploited to develop novel approaches for myelin repair not only in multiple sclerosis, but also in neurological and neuropsychiatric diseases characterized by demyelination.


Assuntos
Astrócitos/fisiologia , Doenças Desmielinizantes/fisiopatologia , Vesículas Extracelulares/fisiologia , Microglia/fisiologia , Bainha de Mielina/fisiologia , Remielinização/fisiologia , Animais , Astrócitos/patologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Técnicas de Cocultura , Corpo Caloso/patologia , Corpo Caloso/fisiopatologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/patologia , Inflamação/patologia , Inflamação/fisiopatologia , Lisofosfatidilcolinas , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos C57BL , Microglia/patologia , Bainha de Mielina/patologia , Neuroproteção/fisiologia , Células Precursoras de Oligodendrócitos/patologia , Células Precursoras de Oligodendrócitos/fisiologia , Ratos Sprague-Dawley
9.
FEBS Lett ; 592(6): 949-961, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29427528

RESUMO

We show that glioblastoma multiform (GBM) cells overexpressing the constitutively active form of the epidermal growth factor receptor [epidermal growth factor receptor variant III (EGFRvIII) and U87MG human GBM cell line overexpressing EGFRvIII (EGFR+) cells] possess greater invasive properties and have higher levels of extracellular sphingosine-1-phosphate (S1P) and increased sphingosine kinase-1 (SK1) activity than the empty vector-expressing cells. Notably, the inhibition of SK1 or S1P receptors decreases the invasiveness of EGFR+ cells. Moreover, EGFR and MEK1 inhibitors reduce both SK1 activation and cell invasion, suggesting that the enhanced invasiveness observed in the EGFR+ cells depends on the increased S1P secretion, downstream of the EGFRvIII-ERK-SK1-S1P pathway. Altogether, the results of the present study indicate that, in GBM cells, EGFRvIII is connected with the S1P signaling pathway to enhance cell invasiveness and tumor progression.


Assuntos
Glioblastoma/metabolismo , Lisofosfolipídeos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Esfingosina/análogos & derivados , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Lisofosfolipídeos/genética , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/genética , Esfingosina/metabolismo
10.
Adv Exp Med Biol ; 1112: 293-307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637705

RESUMO

Prostate cancer (PC) is one of the most common leading causes of cancer-related death in men. Currently, the main therapeutic approaches available for PC are based on the androgen deprivation and on radiotherapy. However, despite these treatments being initially effective in cancer remission, several patients undergo recurrence, developing a most aggressive and resistant PC.Emerging evidence showed that abiraterone acetate drug will reduce PC recurrence by a mechanism independent of the inhibition of Cytochrome P450 17α-hydroxylase/17,20-lyase. Here we describe the involvement in the abiraterone-mediated PC cell death of a particular class of bioactive lipids called sphingolipids (SL). Sphingolipids are components of plasma membrane (PM) that organize macromolecular complexes involved in the control of several signaling pathways including the tumor cell death induced by radiotherapy. Here, we show for the first time that both in androgen-sensitive and insensitive PC cells abiraterone and ionizing radiation induce a reorganization of the plasma membrane SL composition. This event is triggered by activation of the PM-associated glycohydrolases that induce the production of cytotoxic ceramide by the in situ hydrolyses of glycosphingolipids. Taken together our data open a new scenario on the SL involvement in the therapy of PC.


Assuntos
Androstenos/farmacologia , Neoplasias da Próstata/patologia , Radiação Ionizante , Esfingolipídeos/química , Linhagem Celular Tumoral , Homeostase , Humanos , Masculino
11.
Mediators Inflamm ; 2017: 1730245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29333001

RESUMO

Cystic fibrosis (CF) is the most common autosomal genetic recessive disease caused by mutations of gene encoding for the cystic fibrosis transmembrane conductance regulator. Patients with CF display a wide spectrum of symptoms, the most severe being chronic lung infection and inflammation, which lead to onset of cystic fibrosis lung disease. Several studies indicate that sphingolipids play a regulatory role in airway inflammation. The inhibition and downregulation of GBA2, the enzyme catabolizing glucosylceramide to ceramide, are associated with a significant reduction of IL-8 production in CF bronchial epithelial cells. Herein, we demonstrate that GBA2 plays a role in the proinflammatory state characterizing CF cells. We also report for the first time that Pseudomonas aeruginosa infection causes a recruitment of plasma membrane-associated glycosphingolipid hydrolases into lipid rafts of CuFi-1-infected cells. This reorganization of cell membrane may be responsible for activation of a signaling cascade, culminating in aberrant inflammatory response in CF bronchial epithelial cells upon bacterial infection. Taken together, the presented data further support the role of sphingolipids and their metabolic enzymes in controlling the inflammatory response in CF.


Assuntos
Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Glicosídeo Hidrolases/metabolismo , Infecções por Pseudomonas/metabolismo , Esfingolipídeos/metabolismo , beta-Glucosidase/metabolismo , Brônquios/metabolismo , Brônquios/microbiologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Fibrose Cística/complicações , Glucosilceramidase , Humanos , Mediadores da Inflamação/metabolismo , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Infecções por Pseudomonas/complicações , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Transdução de Sinais
12.
Mol Biosyst ; 11(6): 1612-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25797839

RESUMO

Glioblastoma multiforme is the most aggressive astrocytoma characterized by the development of resistant cells to various cytotoxic stimuli. Nitric oxide (NO) is able to overcome tumor resistance in PTEN mutated rat C6 glioma cells due to its ability to inhibit cell growth by influencing the intracellular distribution of ceramide. The aim of this study is to monitor the effects of NO donor PAPANONOate on ceramide trafficking in human glioma cell lines, CCF-STTG1 (PTEN-mutated, p53-wt) and T98G (PTEN-harboring, p53-mutated), together with the assessment of their differential molecular signature by 2D-DIGE and MALDI mass spectrometry. In the CCF-STTG1 cell line, the results indicate that treatment with PAPANONOate decreased cell proliferation (<50%) and intracellular trafficking of ceramide, assessed by BODIPY-C5Cer, while these events were not observed in the T98G cell line. Proteomic results suggest that CCF-STTG1 cells are characterized by an increased expression of proteins involved in NO-associated ER stress (i.e. protein disulfide-isomerase A3, calreticulin, 78 kDa glucose-regulated protein), which could compromise ceramide delivery from ER to Golgi, leading to ceramide accumulation in ER and partial growth arrest. Conversely, T98G cell lines, resistant to NO exposure, are characterized by increased levels of cytosolic antioxidant proteins (i.e. glutathione-S-transferase P, peroxiredoxin 1), which might buffer intracellular NO. By providing differential ceramide distribution after NO exposure and differential protein expression of two high grade glioma cell lines, this study highlights specific proteins as possible markers for tumor aggressiveness. This study demonstrates that, in two different high grade glioma cell lines, NO exposure results in a different ceramide distribution and protein expression. Furthermore, this study highlights specific proteins as possible markers for tumor aggressiveness.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Hidrazinas/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/farmacologia , Proteoma/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/patologia , Humanos , Hidrazinas/farmacocinética , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacocinética , Doadores de Óxido Nítrico/farmacocinética , Proteoma/análise , Proteômica
13.
PLoS One ; 9(10): e110875, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25350564

RESUMO

Accumulating evidence suggests that glucolipotoxicity, arising from the combined actions of elevated glucose and free fatty acid levels, acts as a key pathogenic component in type II diabetes, contributing to ß-cell dysfunction and death. Endoplasmic reticulum (ER) stress is among the molecular pathways and regulators involved in these negative effects, and ceramide accumulation due to glucolipotoxicity can be associated with the induction of ER stress. Increased levels of ceramide in ER may be due to enhanced ceramide biosynthesis and/or decreased ceramide utilization. Here, we studied the effect of glucolipotoxic conditions on ceramide traffic in INS-1 cells in order to gain insights into the molecular mechanism(s) of glucolipotoxicity. We showed that glucolipotoxicity inhibited ceramide utilization for complex sphingolipid biosynthesis, thereby reducing the flow of ceramide from the ER to Golgi. Glucolipotoxicity impaired both vesicular- and CERT-mediated ceramide transport through (1) the decreasing of phospho-Akt levels which in turn possibly inhibits vesicular traffic, and (2) the reducing of the amount of active CERT mainly due to a lower protein levels and increased protein phosphorylation to prevent its localization to the Golgi. In conclusion, our findings provide evidence that glucolipotoxicity-induced ceramide overload in the ER, arising from a defect in ceramide trafficking may be a mechanism that contributes to dysfunction and/or death of ß-cells exposed to glucolipotoxicity.


Assuntos
Ceramidas/química , Retículo Endoplasmático/metabolismo , Glucose/química , Complexo de Golgi/metabolismo , Células Secretoras de Insulina/citologia , Animais , Linhagem Celular , Sobrevivência Celular , Diabetes Mellitus/metabolismo , Estresse do Retículo Endoplasmático , Insulinoma/metabolismo , Ácido Palmítico/química , Fosforilação , Interferência de RNA , Ratos , Esfingomielinas/química , Esfingosina/química
14.
Glia ; 62(12): 1968-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25042636

RESUMO

Accumulating reports suggest that human glioblastoma contains glioma stem-like cells (GSCs) which act as key determinants driving tumor growth, angiogenesis, and contributing to therapeutic resistance. The proliferative signals involved in GSC proliferation and progression remain unclear. Using GSC lines derived from human glioblastoma specimens with different proliferative index and stemness marker expression, we assessed the hypothesis that sphingosine-1-phosphate (S1P) affects the proliferative and stemness properties of GSCs. The results of metabolic studies demonstrated that GSCs rapidly consume newly synthesized ceramide, and export S1P in the extracellular environment, both processes being enhanced in the cells exhibiting high proliferative index and stemness markers. Extracellular S1P levels reached nM concentrations in response to increased extracellular sphingosine. In addition, the presence of EGF and bFGF potentiated the constitutive capacity of GSCs to rapidly secrete newly synthesized S1P, suggesting that cooperation between S1P and these growth factors is of central importance in the maintenance and proliferation of GSCs. We also report for the first time that S1P is able to act as a proliferative and pro-stemness autocrine factor for GSCs, promoting both their cell cycle progression and stemness phenotypic profile. These results suggest for the first time that the GSC population is critically modulated by microenvironmental S1P, this bioactive lipid acting as an autocrine signal to maintain a pro-stemness environment and favoring GSC proliferation, survival and stem properties.


Assuntos
Neoplasias Encefálicas/patologia , Proliferação de Células/fisiologia , Glioblastoma/patologia , Lisofosfolipídeos/metabolismo , Células-Tronco Neoplásicas/fisiologia , Esfingosina/análogos & derivados , Animais , Células Cultivadas , Ceramidas/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Cloridrato de Fingolimode , Humanos , Imunossupressores/farmacologia , Antígeno Ki-67/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Propilenoglicóis/farmacologia , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Esfingosina/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Mol Sci ; 15(3): 4356-92, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24625663

RESUMO

Drug resistance elicited by cancer cells still constitutes a huge problem that frequently impairs the efficacy of both conventional and novel molecular therapies. Chemotherapy usually acts to induce apoptosis in cancer cells; therefore, the investigation of apoptosis control and of the mechanisms used by cancer cells to evade apoptosis could be translated in an improvement of therapies. Among many tools acquired by cancer cells to this end, the de-regulated synthesis and metabolism of sphingolipids have been well documented. Sphingolipids are known to play many structural and signalling roles in cells, as they are involved in the control of growth, survival, adhesion, and motility. In particular, in order to increase survival, cancer cells: (a) counteract the accumulation of ceramide that is endowed with pro-apoptotic potential and is induced by many drugs; (b) increase the synthesis of sphingosine-1-phosphate and glucosylceramide that are pro-survivals signals; (c) modify the synthesis and the metabolism of complex glycosphingolipids, particularly increasing the levels of modified species of gangliosides such as 9-O acetylated GD3 (αNeu5Ac(2-8)αNeu5Ac(2-3)ßGal(1-4)ßGlc(1-1)Cer) or N-glycolyl GM3 (αNeu5Ac (2-3)ßGal(1-4)ßGlc(1-1)Cer) and de-N-acetyl GM3 (NeuNH(2)ßGal(1-4)ßGlc(1-1)Cer) endowed with anti-apoptotic roles and of globoside Gb3 related to a higher expression of the multidrug resistance gene MDR1. In light of this evidence, the employment of chemical or genetic approaches specifically targeting sphingolipid dysregulations appears a promising tool for the improvement of current chemotherapy efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Esfingolipídeos/metabolismo , Animais , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/química
16.
PLoS One ; 8(6): e68229, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826381

RESUMO

Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs), a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P) a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ), and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source of extracellular S1P, which might act as an autocrine/paracrine signal contributing to their malignant properties.


Assuntos
Neoplasias Encefálicas/patologia , Espaço Extracelular/metabolismo , Glioblastoma/patologia , Lisofosfolipídeos/farmacologia , Células-Tronco Neoplásicas/patologia , Esfingosina/análogos & derivados , Linhagem Celular Tumoral , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Glioblastoma/enzimologia , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lisofosfolipídeos/biossíntese , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/biossíntese , Esfingosina/farmacologia , Temozolomida
17.
Biochim Biophys Acta ; 1831(2): 251-62, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23085009

RESUMO

Sphingoid base-1-phosphates represent a very low portion of the sphingolipid pool but are potent bioactive lipids in mammals. This study was undertaken to determine whether these lipids are produced in palmitate-treated pancreatic ß cells and what role they play in palmitate-induced ß cell apoptosis. Our lipidomic analysis revealed that palmitate at low and high glucose supplementation increased (dihydro)sphingosine-1-phosphate levels in INS-1 ß cells. This increase was associated with an increase in sphingosine kinase 1 (SphK1) mRNA and protein levels. Over-expression of SphK1 in INS-1 cells potentiated palmitate-induced accumulation of dihydrosphingosine-1-phosphate. N,N-dimethyl-sphingosine, a potent inhibitor of SphK, potentiated ß-cell apoptosis induced by palmitate whereas over-expression of SphK1 significantly reduced apoptosis induced by palmitate with high glucose. Endoplasmic reticulum (ER)-targeted SphK1 also partially inhibited apoptosis induced by palmitate. Inhibition of INS-1 apoptosis by over-expressed SphK1 was independent of sphingosine-1-phosphate receptors but was associated with a decreased formation of pro-apoptotic ceramides induced by gluco-lipotoxicity. Moreover, over-expression of SphK1 counteracted the defect in the ER-to-Golgi transport of proteins that contribute to the ceramide-dependent ER stress observed during gluco-lipotoxicity. In conclusion, our results suggest that activation of palmitate-induced SphK1-mediated sphingoid base-1-phosphate formation in the ER of ß cells plays a protective role against palmitate-induced ceramide-dependent apoptotic ß cell death.


Assuntos
Ilhotas Pancreáticas/efeitos dos fármacos , Lisofosfolipídeos/biossíntese , Esfingosina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular Tumoral , Cromatografia Líquida , Primers do DNA , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Lisofosfolipídeos/genética , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , Ácido Palmítico , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingosina/biossíntese , Esfingosina/genética , Espectrometria de Massas em Tandem
18.
J Biol Chem ; 284(8): 5088-96, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19103588

RESUMO

Different lines of evidence indicate that both aberrant activation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt survival pathway and down-regulation of the death mediator ceramide play a critical role in the aggressive behavior, apoptosis resistance, and adverse clinical outcome of glioblastoma multiforme. Furthermore, the inhibition of the PI3K/Akt pathway and the up-regulation of ceramide have been found functional to the activity of many cytotoxic treatments against glioma cell lines and glioblastomas as well. A reciprocal control between PI3K/Akt and ceramide signaling in glioma cell survival/death is suggested by data demonstrating a protective role of PI3K/Akt on ceramide-induced cell death in glial cells. In this study we investigated the role of the PI3K/Akt pathway in the regulation of the ceramide metabolism in C6 glioma cells, a cell line in which the PI3K/Akt pathway is constitutively activated. Metabolic experiments performed with different radioactive metabolic precursors of sphingolipids and microscopy studies with fluorescent ceramides demonstrated that the chemical inhibition of PI3K and the transfection with a dominant negative Akt strongly inhibited ceramide utilization for the biosynthesis of complex sphingolipids by controlling the endoplasmic reticulum (ER) to Golgi vesicular transport of ceramide. These findings constitute the first evidence for a PI3K/Akt-dependent regulation of vesicle-mediated movements of ceramide in the ER-Golgi district. Moreover, the findings also suggest the activation of the PI3K/Akt pathway as crucial to coordinate the biosynthesis of membrane complex sphingolipids with cell proliferation and growth and/or to maintain low ceramide levels, especially as concerns those treatments that promote ceramide biosynthesis in the ER.


Assuntos
Apoptose , Ceramidas/biossíntese , Retículo Endoplasmático/enzimologia , Glioblastoma/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glioblastoma/tratamento farmacológico , Complexo de Golgi/enzimologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Transdução de Sinais/efeitos dos fármacos , Vesículas Transportadoras/enzimologia
19.
Biochim Biophys Acta ; 1781(1-2): 40-51, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18068681

RESUMO

Intracellular movements of ceramide are strongly limited by its hydrophobic nature, and the mechanisms involved in ceramide transport can represent a crucial aspect of sphingolipid metabolism and signaling. The recent identification of the ceramide specific carrier protein CERT has revealed a novel pathway for the delivery of ceramide to the Golgi apparatus for sphingomyelin biosynthesis. In this study we investigated the metabolic and functional role of CERT in C6 glioma cells. These cells were found to constitutively express CERT, the protein being mainly associated with the cytosolic fraction. Metabolic experiments performed with different radioactive metabolic precursors of sphingolipids demonstrated that the down regulation of CERT by RNAi technology resulted in a significant but not complete reduction of ceramide metabolism to sphingomyelin, without affecting its utilization for glycosphingolipid biosynthesis. Since nitric oxide is an inhibitor of ceramide ER-to-Golgi traffic and metabolism in C6 glioma cells, we evaluated the possibility that the CERT-mediated transport of ceramide might represent a target for nitric oxide. The data obtained demonstrate that CERT down regulation does not affect the inhibitory activity of nitric oxide on Cer metabolism, and the effects of nitric oxide and CERT silencing on ceramide utilization were additive. These results strongly suggest that a CERT-mediated and a CERT-independent, nitric oxide-sensitive Cer transport coexist in C6 glioma cells and can separately contribute to the control of sphingolipid metabolism and Cer levels in these cells.


Assuntos
Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Glioma/metabolismo , Complexo de Golgi/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Astrócitos/enzimologia , Transporte Biológico , Linhagem Celular Tumoral , Regulação para Baixo , Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Camundongos , Óxido Nítrico/farmacologia , Proteínas Serina-Treonina Quinases/genética , Ratos , Esfingomielinas/biossíntese
20.
J Neurooncol ; 87(1): 23-33, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17975708

RESUMO

HMGB1 (high mobility group box 1 protein) is a nuclear protein that can also act as an extracellular trigger of inflammation, proliferation and migration, mainly through RAGE (the receptor for advanced glycation end products); HMGB1-RAGE interactions have been found to be important in a number of cancers. We investigated whether HMGB1 is an autocrine factor in human glioma cells. Western blots showed HMGB1 and RAGE expression in human malignant glioma cell lines. HMGB1 induced a dose-dependent increase in cell proliferation, which was found to be RAGE-mediated and involved the MAPK/ERK pathway. Moreover, in a wounding model, it induced a significant increase in cell migration, and RAGE-dependent activation of Rac1 was crucial in giving the tumour cells a motile phenotype. The fact that blocking DNA replication with anti-mitotic agents did not reduce the distance migrated suggests the independence of the proliferative and migratory effects. We also found that glioma cells contain HMGB1 predominantly in the nucleus, and cannot secrete it constitutively or upon stimulation; however, necrotic glioma cells can release HMGB1 after it has translocated from the nucleus to cytosol. These findings provide the first evidence supporting the existence of HMGB1/RAGE signalling pathways in human glioblastoma cells, and suggest that HMGB1 may play an important role in the relationship between necrosis and malignancy in glioma tumours by acting as an autocrine factor that is capable of promoting the growth and migration of tumour cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Movimento Celular/fisiologia , Glioblastoma/metabolismo , Proteína HMGB1/metabolismo , Transdução de Sinais/fisiologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Produtos Finais de Glicação Avançada , Humanos , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Necrose/fisiopatologia , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA