Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Inform ; 139: 104303, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736449

RESUMO

Expert microscopic analysis of cells obtained from frequent heart biopsies is vital for early detection of pediatric heart transplant rejection to prevent heart failure. Detection of this rare condition is prone to low levels of expert agreement due to the difficulty of identifying subtle rejection signs within biopsy samples. The rarity of pediatric heart transplant rejection also means that very few gold-standard images are available for developing machine learning models. To solve this urgent clinical challenge, we developed a deep learning model to automatically quantify rejection risk within digital images of biopsied tissue using an explainable synthetic data augmentation approach. We developed this explainable AI framework to illustrate how our progressive and inspirational generative adversarial network models distinguish between normal tissue images and those containing cellular rejection signs. To quantify biopsy-level rejection risk, we first detect local rejection features using a binary image classifier trained with expert-annotated and synthetic examples. We converted these local predictions into a biopsy-wide rejection score via an interpretable histogram-based approach. Our model significantly improves upon prior works with the same dataset with an area under the receiver operating curve (AUROC) of 98.84% for the local rejection detection task and 95.56% for the biopsy-rejection prediction task. A biopsy-level sensitivity of 83.33% makes our approach suitable for early screening of biopsies to prioritize expert analysis. Our framework provides a solution to rare medical imaging challenges currently limited by small datasets.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Humanos , Criança , Diagnóstico por Imagem , Aprendizado de Máquina , Medição de Risco , Complicações Pós-Operatórias
2.
Cancers (Basel) ; 10(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314329

RESUMO

BACKGROUND: Patients with locally advanced or recurrent prostate cancer typically undergo androgen deprivation therapy (ADT), but the benefits are often short-lived and the responses variable. ADT failure results in castration-resistant prostate cancer (CRPC), which inevitably leads to metastasis. We hypothesized that differences in tumor transcriptional programs may reflect differential responses to ADT and subsequent metastasis. RESULTS: We performed whole transcriptome analysis of 20 patient-matched Pre-ADT biopsies and 20 Post-ADT prostatectomy specimens, and identified two subgroups of patients (high impact and low impact groups) that exhibited distinct transcriptional changes in response to ADT. We found that all patients lost the AR-dependent subtype (PCS2) transcriptional signatures. The high impact group maintained the more aggressive subtype (PCS1) signal, while the low impact group more resembled an AR-suppressed (PCS3) subtype. Computational analyses identified transcription factor coordinated groups (TFCGs) enriched in the high impact group network. Leveraging a large public dataset of over 800 metastatic and primary samples, we identified 33 TFCGs in common between the high impact group and metastatic lesions, including SOX4/FOXA2/GATA4, and a TFCG containing JUN, JUNB, JUND, FOS, FOSB, and FOSL1. The majority of metastatic TFCGs were subsets of larger TFCGs in the high impact group network, suggesting a refinement of critical TFCGs in prostate cancer progression. CONCLUSIONS: We have identified TFCGs associated with pronounced initial transcriptional response to ADT, aggressive signatures, and metastasis. Our findings suggest multiple new hypotheses that could lead to novel combination therapies to prevent the development of CRPC following ADT.

3.
PLoS One ; 12(1): e0170339, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28118365

RESUMO

Protein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic signals that are essential to cellular proliferation and survival, and thus represent potential targets for anti-cancer therapeutic discovery. Despite their significance, there is no method to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs. The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for drug discovery and help advance understanding of cancer biology. Here we introduce a computational method (MEDICI) to predict PPI essentiality by combining gene knockdown studies with network models of protein interaction pathways in an analytic framework. Our method uses network topology to model how gene silencing can disrupt PPIs, relating the unknown essentialities of individual PPIs to experimentally observed protein essentialities. This model is then deconvolved to recover the unknown essentialities of individual PPIs. We demonstrate the validity of our approach via prediction of sensitivities to compounds based on PPI essentiality and differences in essentiality based on genetic mutations. We further show that lung cancer patients have improved overall survival when specific PPIs are no longer present, suggesting that these PPIs may be potentially new targets for therapeutic development. Software is freely available at https://github.com/cooperlab/MEDICI. Datasets are available at https://ctd2.nci.nih.gov/dataPortal.


Assuntos
Antineoplásicos/farmacologia , Mineração de Dados/métodos , Descoberta de Drogas , Proteínas de Neoplasias/metabolismo , Software , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Análise por Conglomerados , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Terapia de Alvo Molecular , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Redes Neurais de Computação , Mapeamento de Interação de Proteínas , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Blood ; 120(15): 2981-9, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22936656

RESUMO

Increased expression of Kruppel-like factor 7 (KLF7) is an independent predictor of poor outcome in pediatric acute lymphoblastic leukemia. The contribution of KLF7 to hematopoiesis has not been previously described. Herein, we characterized the effect on murine hematopoiesis of the loss of KLF7 and enforced expression of KLF7. Long-term multilineage engraftment of Klf7(-/-) cells was comparable with control cells, and self-renewal, as assessed by serial transplantation, was not affected. Enforced expression of KLF7 results in a marked suppression of myeloid progenitor cell growth and a loss of short- and long-term repopulating activity. Interestingly, enforced expression of KLF7, although resulting in multilineage growth suppression that extended to hematopoietic stem cells and common lymphoid progenitors, spared T cells and enhanced the survival of early thymocytes. RNA expression profiling of KLF7-overexpressing hematopoietic progenitors identified several potential target genes mediating these effects. Notably, the known KLF7 target Cdkn1a (p21(Cip1/Waf1)) was not induced by KLF7, and loss of CDKN1A does not rescue the repopulating defect. These results suggest that KLF7 is not required for normal hematopoietic stem and progenitor function, but increased expression, as seen in a subset of lymphoid leukemia, inhibits myeloid cell proliferation and promotes early thymocyte survival.


Assuntos
Células-Tronco Hematopoéticas/patologia , Fatores de Transcrição Kruppel-Like/fisiologia , Células Progenitoras Linfoides/patologia , Células Progenitoras Mieloides/patologia , Células-Tronco/patologia , Linfócitos T/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Diferenciação Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Células Progenitoras Linfoides/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Progenitoras Mieloides/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA