Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37642942

RESUMO

Pervasive neuroinflammation occurs in many neurodegenerative diseases, including Alzheimer's disease (AD). SPI1/PU.1 is a transcription factor located at a genome-wide significant AD-risk locus and its reduced expression is associated with delayed onset of AD. We analyzed single-cell transcriptomic datasets from microglia of human AD patients and found an enrichment of PU.1-binding motifs in the differentially expressed genes. In hippocampal tissues from transgenic mice with neurodegeneration, we found vastly increased genomic PU.1 binding. We then screened for PU.1 inhibitors using a PU.1 reporter cell line and discovered A11, a molecule with anti-inflammatory efficacy and nanomolar potency. A11 regulated genes putatively by recruiting a repressive complex containing MECP2, HDAC1, SIN3A, and DNMT3A to PU.1 motifs, thus representing a novel mechanism and class of molecules. In mouse models of AD, A11 ameliorated neuroinflammation, loss of neuronal integrity, AD pathology, and improved cognitive performance. This study uncovers a novel class of anti-inflammatory molecules with therapeutic potential for neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Doenças Neuroinflamatórias , Animais , Camundongos , Humanos , Oncogenes , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Linhagem Celular , Modelos Animais de Doenças , Camundongos Transgênicos
2.
Transl Psychiatry ; 9(1): 44, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696811

RESUMO

Mutations in the MAPT gene, which encodes the tau protein, are associated with several neurodegenerative diseases, including frontotemporal dementia (FTD), dementia with epilepsy, and other types of dementia. The missense mutation in the Mapt gene in the P301S mouse model of FTD results in impaired synaptic function and microgliosis at three months of age, which are the earliest manifestations of disease. Here, we examined changes in the S-nitrosoproteome in 2-month-old transgenic P301S mice in order to detect molecular events corresponding to early stages of disease progression. S-nitrosylated (SNO) proteins were identified in two brain regions, cortex and hippocampus, in P301S and Wild Type (WT) littermate control mice. We found major changes in the S-nitrosoproteome between the groups in both regions. Several pathways converged to show that calcium regulation and non-canonical Wnt signaling are affected using GO and pathway analysis. Significant increase in 3-nitrotyrosine was found in the CA1 and entorhinal cortex regions, which indicates an elevation of oxidative stress and nitric oxide formation. There was evidence of increased Non-Canonical Wnt/Ca++ (NC-WCa) signaling in the cortex of the P301S mice; including increases in phosphorylated CaMKII, and S-nitrosylation of E3 ubiquitin-protein ligase RNF213 (RNF-213) leading to increased levels of nuclear factor of activated T-cells 1 (NFAT-1) and FILAMIN-A, which further amplify the NC-WCa and contribute to the pathology. These findings implicate activation of the NC-WCa pathway in tauopathy and provide novel insights into the contribution of S-nitrosylation to NC-WCa activation, and offer new potential drug targets for treatment of tauopathies.


Assuntos
Adenosina Trifosfatases/metabolismo , Encéfalo/metabolismo , Sinalização do Cálcio , Óxido Nítrico/metabolismo , Tauopatias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Animais , Córtex Cerebral/metabolismo , Córtex Entorrinal/metabolismo , Filaminas/metabolismo , Ontologia Genética , Hipocampo/metabolismo , Masculino , Camundongos Transgênicos , Fatores de Transcrição NFATC/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Proteoma , Proteômica
3.
Cell ; 161(7): 1592-605, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26052046

RESUMO

Neuronal activity causes the rapid expression of immediate early genes that are crucial for experience-driven changes to synapses, learning, and memory. Here, using both molecular and genome-wide next-generation sequencing methods, we report that neuronal activity stimulation triggers the formation of DNA double strand breaks (DSBs) in the promoters of a subset of early-response genes, including Fos, Npas4, and Egr1. Generation of targeted DNA DSBs within Fos and Npas4 promoters is sufficient to induce their expression even in the absence of an external stimulus. Activity-dependent DSB formation is likely mediated by the type II topoisomerase, Topoisomerase IIß (Topo IIß), and knockdown of Topo IIß attenuates both DSB formation and early-response gene expression following neuronal stimulation. Our results suggest that DSB formation is a physiological event that rapidly resolves topological constraints to early-response gene expression in neurons.


Assuntos
Quebras de DNA de Cadeia Dupla , Neurônios/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator de Ligação a CCCTC , DNA Topoisomerases Tipo II/análise , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Etoposídeo/farmacologia , Regulação da Expressão Gênica , Genes fos , Estudo de Associação Genômica Ampla , Camundongos , Proteínas Repressoras/metabolismo , Transcriptoma/efeitos dos fármacos
4.
Nature ; 518(7539): 365-9, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25693568

RESUMO

Alzheimer's disease (AD) is a severe age-related neurodegenerative disorder characterized by accumulation of amyloid-ß plaques and neurofibrillary tangles, synaptic and neuronal loss, and cognitive decline. Several genes have been implicated in AD, but chromatin state alterations during neurodegeneration remain uncharacterized. Here we profile transcriptional and chromatin state dynamics across early and late pathology in the hippocampus of an inducible mouse model of AD-like neurodegeneration. We find a coordinated downregulation of synaptic plasticity genes and regulatory regions, and upregulation of immune response genes and regulatory regions, which are targeted by factors that belong to the ETS family of transcriptional regulators, including PU.1. Human regions orthologous to increasing-level enhancers show immune-cell-specific enhancer signatures as well as immune cell expression quantitative trait loci, while decreasing-level enhancer orthologues show fetal-brain-specific enhancer activity. Notably, AD-associated genetic variants are specifically enriched in increasing-level enhancer orthologues, implicating immune processes in AD predisposition. Indeed, increasing enhancers overlap known AD loci lacking protein-altering variants, and implicate additional loci that do not reach genome-wide significance. Our results reveal new insights into the mechanisms of neurodegeneration and establish the mouse as a useful model for functional studies of AD regulatory regions.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Epigênese Genética/genética , Modelos Biológicos , Doença de Alzheimer/fisiopatologia , Animais , Cromatina/genética , Cromatina/metabolismo , Sequência Conservada , Modelos Animais de Doenças , Regulação para Baixo/genética , Elementos Facilitadores Genéticos/genética , Epigenômica , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Hipocampo/metabolismo , Humanos , Imunidade/genética , Memória/fisiologia , Camundongos , Plasticidade Neuronal/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Transcrição Gênica/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA