Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Analyst ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230365

RESUMO

Alterations in pH are a hallmark in several pathologies including cancer, ischemia, and inflammation. Non-invasive magnetic resonance methods to measure pH offer a new approach for early diagnosis of diseases characterized by acid-base imbalances. The hyperpolarization with parahydrogen-induced polarization (PHIP) enhances inherently low signals in magnetic resonance experiments by several orders of magnitude and offers a suitable platform to obtain biocompatible markers in less than one minute. Here, we present an optimized preparation of an hyperpolarized H13CO3-/13CO2 pH sensor via non-enzymatic decarboxylation with H2O2 of [1-13C]pyruvate-d3 obtained by PHIP at 7 T. An improved 13C polarization of purified [1-13C]pyruvate-d3 in water with 36.65 ± 0.06% polarization was obtained starting from 50 mM precursor. Subsequent decarboxylation, H13CO3-/13CO2 exhibited 12.46 ± 0.01% of polarization at physiological pH, 45 seconds after the reaction start. Considering the dilution factor that [1-13C]pyruvate-d3 exhibits in vivo, we optimized our methodology to test the accuracy of the pH sensor at single digit millimolar concentration. In vitro pH estimations on phantoms and cell culture media demonstrated accurate pH calculations with uncertainties of less than 0.08 units. These promising results highlight the efficiency of a pH sensor generated via PHIP in less than one minute, with remarkable polarization, and biocompatibility suitable for future in vivo studies.

2.
Chemistry ; : e202400187, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887134

RESUMO

Parahydrogen-induced polarization (PHIP) is an emerging technique to enhance the signal of stable isotope metabolic contrast agents for Magnetic Resonance (MR). The objective of this study is to continue establishing 1-13C-pyruvate-d3, signal-enhanced via PHIP, as a hyperpolarized contrast agent, obtained in seconds, to monitor metabolism in human cancer. Our focus was on human pancreatic and colon tumor xenografts. 1-13C-vinylpyruvate-d6 was hydrogenated using parahydrogen. Thereafter, the polarization of the protons was transferred to 13C. Following a workup procedure, the free hyperpolarized 1-13C-pyruvate-d3 was obtained in clean aqueous solution. After injection into animals bearing either pancreatic or colon cancer xenografts, slice-selective MR spectra were acquired and analyzed to determine rate constants of metabolic conversion into lactate and alanine. 1-13C-pyruvate-d3 proved to follow the increased metabolic rate to lactate and alanine in the tumor xenografts.

3.
Chem Sci ; 14(28): 7642-7647, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37476713

RESUMO

Signal-enhanced or hyperpolarized nuclear magnetic resonance (NMR) spectroscopy stands out as a unique tool to monitor real-time enzymatic reactions in living cells. The singlet state of para-hydrogen is thereby one source of spin order that can be converted into largely enhanced signals of e.g. metabolites. Here, we have investigated a parahydrogen-induced polarization (PHIP) approach as a biological assay for in vitro cellular metabolic characterization. Here, we demonstrate the possibility to perform consecutive measurements yielding metabolic information on the same sample. We observed a strongly reduced pyruvate-to-lactate conversion rate (flux) of a Hodgkin's lymphoma cancer cell line L1236 treated with FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT) affecting the amount of NAD+ and thus NADH in cells. In the consecutive measurement the flux was recovered by NADH to the same amount as in the single-measurement-per-sample and provides a promising new analytical tool for continuous real-time studies combinable with bioreactors and lab-on-a-chip devices in the future.

4.
Angew Chem Int Ed Engl ; 62(36): e202306654, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37439488

RESUMO

Metabolic magnetic resonance imaging (MRI) using hyperpolarized (HP) pyruvate is becoming a non-invasive technique for diagnosing, staging, and monitoring response to treatment in cancer and other diseases. The clinically established method for producing HP pyruvate, dissolution dynamic nuclear polarization, however, is rather complex and slow. Signal Amplification By Reversible Exchange (SABRE) is an ultra-fast and low-cost method based on fast chemical exchange. Here, for the first time, we demonstrate not only in vivo utility, but also metabolic MRI with SABRE. We present a novel routine to produce aqueous HP [1-13 C]pyruvate-d3 for injection in 6 minutes. The injected solution was sterile, non-toxic, pH neutral and contained ≈30 mM [1-13 C]pyruvate-d3 polarized to ≈11 % (residual 250 mM methanol and 20 µM catalyst). It was obtained by rapid solvent evaporation and metal filtering, which we detail in this manuscript. This achievement makes HP pyruvate MRI available to a wide biomedical community for fast metabolic imaging of living organisms.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Imageamento por Ressonância Magnética/métodos , Solventes/química , Metanol , Água/química
5.
J Am Chem Soc ; 145(10): 5864-5871, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857108

RESUMO

In recent years, parahydrogen-induced polarization side arm hydrogenation (PHIP-SAH) has been applied to hyperpolarize [1-13C]pyruvate and map its metabolic conversion to [1-13C]lactate in cancer cells. Developing on our recent MINERVA pulse sequence protocol, in which we have achieved 27% [1-13C]pyruvate carbon polarization, we demonstrate the hyperpolarization of [1,2-13C]pyruvate (∼7% polarization on each 13C spin) via PHIP-SAH. By altering a single parameter in the pulse sequence, MINERVA enables the signal enhancement of C1 and/or C2 in [1,2-13C]pyruvate with the opposite phase, which allows for the simultaneous monitoring of different chemical reactions with enhanced spectral contrast or for the same reaction via different carbon sites. We first demonstrate the ability to monitor the same enzymatic pyruvate to lactate conversion at 7T in an aqueous solution, in vitro, and in-cell (HeLa cells) via different carbon sites. In a second set of experiments, we use the C1 and C2 carbon positions as spectral probes for simultaneous chemical reactions: the production of acetate, carbon dioxide, bicarbonate, and carbonate by reacting [1,2-13C]pyruvate with H2O2 at a high temperature (55 °C). Importantly, we detect and characterize the intermediate 2-hydroperoxy-2-hydroxypropanoate in real time and at high temperature.


Assuntos
Peróxido de Hidrogênio , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Células HeLa , Hidrogenação , Ácido Láctico
6.
Chemphyschem ; 24(2): e202200615, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36106366

RESUMO

The metabolism of malignant cells differs significantly from that of healthy cells and thus, it is possible to perform metabolic imaging to reveal not only the exact location of a tumor, but also intratumoral areas of high metabolic activity. Herein, we demonstrate the feasibility of metabolic tumor imaging using signal-enhanced 1-13 C-pyruvate-d3 , which is rapidly enhanced via para-hydrogen, and thus, the signal is amplified by several orders of magnitudes in less than a minute. Using as a model, human melanoma xenografts injected with signal-enhanced 1-13 C-pyruvate-d3, we show that the conversion of pyruvate into lactate can be monitored along with its kinetics, which could pave the way for rapidly detecting and monitoring changes in tumor metabolism.


Assuntos
Neoplasias , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Hidrogênio , Imageamento por Ressonância Magnética/métodos , Isótopos de Carbono
7.
Angew Chem Int Ed Engl ; 61(34): e202206298, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35723041

RESUMO

Hyperpolarization methods in magnetic resonance enhance the signals by several orders of magnitude, opening new windows for real-time investigations of dynamic processes in vitro and in vivo. Here, we propose a field-independent para-hydrogen-based pulsed method to produce rapidly hyperpolarized 13 C-labeled substrates. We demonstrate the method by polarizing the carboxylic carbon of the pyruvate moiety in a purposely designed precursor to 24 % at ≈22 mT. Following a fast purification procedure, we measure 8 % polarization on free [1-13 C]pyruvate in clean water solutions at physiological conditions at 7 T. The enhanced signals allow real-time monitoring of the pyruvate-lactate conversion in cancer cells, demonstrating the potential of the method for biomedical applications in combination with existing or developing magnetic resonance technologies.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Isótopos de Carbono , Hidrogênio , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Água
8.
NMR Biomed ; 34(1): e4400, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32869915

RESUMO

MR is a prominent technology to investigate diseases, with millions of clinical procedures performed every year. Metabolic dysfunction is one common aspect associated with many diseases. Thus, understanding and monitoring metabolic changes is essential to develop cures for many illnesses, including for example cancer and neurodegeneration. MR methodologies are especially suited to study endogenous metabolites and processes within an organism in vivo, which has led to many insights about physiological functions. Advancing metabolic MR techniques is therefore key to further understand physiological processes. Here, we introduce an approach based on nuclear spin singlet states to specifically filter metabolic signals and particularly show that singlet-filtered glutamate can be observed distinctly in the hippocampus of a living mouse in vivo. This development opens opportunities to make use of the singlet spin phenomenon in vivo and besides its use as a filter to provide scope for new contrast agents.


Assuntos
Espectroscopia de Ressonância Magnética , Animais , Simulação por Computador , Imageamento por Ressonância Magnética , Masculino , Metaboloma , Camundongos Endogâmicos C57BL
9.
Chem Sci ; 12(1): 314-319, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34163599

RESUMO

The phenomenon of nuclear magnetic resonance (NMR) is widely applied in biomedical and biological science to study structures and dynamics of proteins and their reactions. Despite its impact, NMR is an inherently insensitive phenomenon and has driven the field to construct spectrometers with increasingly higher magnetic fields leading to more detection sensitivity. Here, we are demonstrating that enzymatic reactions can be followed in real-time at millitesla fields, three orders of magnitude lower than the field of state-of-the-art NMR spectrometers. This requires signal-enhancing samples via hyperpolarization. Within seconds, we have enhanced the signals of 2-13C-pyruvate, an important metabolite to probe cancer metabolism, in 22 mM concentrations (up to 10.1% ± 0.1% polarization) and show that such a large signal allows for the real-time detection of enzymatic conversion of pyruvate to lactate at 24 mT. This development paves the pathways for biological studies in portable and affordable NMR systems with a potential for medical diagnostics.

10.
Phys Chem Chem Phys ; 21(41): 22849-22856, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31612167

RESUMO

Hyperpolarized metabolites are very attractive contrast agents for in vivo magnetic resonance imaging studies enabling early diagnosis of cancer, for example. Real-time production of concentrated solutions of metabolites is a desired goal that will enable new applications such as the continuous investigation of metabolic changes. To this end, we are introducing two NMR experiments that allow us to deliver high levels of polarization at high concentrations (50 mM) of an acetate precursor (55% 13C polarization) and acetate (17% 13C polarization) utilizing 83% para-state enriched hydrogen within seconds at high magnetic field (7 T). Furthermore, we have translated these experiments to a portable low-field spectrometer with a permanent magnet operating at 1 T. The presented developments pave the way for a rapid and affordable production of hyperpolarized metabolites that can be implemented in e.g. metabolomics labs and for medical diagnosis.


Assuntos
Técnicas de Química Analítica/métodos , Meios de Contraste/síntese química , Campos Magnéticos , Acetatos/química , Acetatos/metabolismo , Meios de Contraste/química , Hidrogênio/química , Imageamento por Ressonância Magnética/instrumentação
11.
ChemistryOpen ; 7(5): 344-348, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29761065

RESUMO

Diseases such as Alzheimer's and cancer have been linked to metabolic dysfunctions, and further understanding of metabolic pathways raises hope to develop cures for such diseases. To broaden the knowledge of metabolisms in vitro and in vivo, methods are desirable for direct probing of metabolic function. Here, we are introducing a pulsed nuclear magnetic resonance (NMR) approach to generate hyperpolarized metabolites within seconds, which act as metabolism probes. Hyperpolarization represents a magnetic resonance technique to enhance signals by over 10 000-fold. We accomplished an efficient metabolite hyperpolarization by developing an isotopic labeling strategy for generating precursors containing a favorable nuclear spin system to add para-hydrogen and convert its two-spin longitudinal order into enhanced metabolite signals. The transfer is performed by an invented NMR experiment and 20 000-fold signal enhancements are achieved. Our technique provides a fast way of generating hyperpolarized metabolites by using para-hydrogen directly in a high magnetic field without the need for field cycling.

12.
NMR Biomed ; 31(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193406

RESUMO

The aims of this study were to implement a magnetic resonance spectroscopy (MRS) protocol for the online profiling of subnanomolar quantities of metabolites sampled from the extracellular fluid using implanted microdialysis and to apply this protocol in glioma-bearing rats for the quantification of lactate concentration and the measurement of time-varying lactate concentration during drug administration. MRS acquisitions on the brain microdialysate were performed using a home-built, proton-tuned, microsolenoid with an active volume of 2 µL. The microcoil was placed at the outlet of the microdialysis probe inside a preclinical magnetic resonance imaging (MRI) scanner. C6-bearing rats were implanted with microdialysis probes perfused with artificial cerebrospinal fluid solution and the lactate dehydrogenase (LDH) inhibitor oxamate. Microcoil magnetic resonance spectra were continuously updated using a single-pulse sequence. Localized in vivo spectra and high-resolution spectra on the dialysate were also acquired. The limit of detection and limit of quantification per unit time of the lactate methyl peak were determined as 0.37 nmol/√min and 1.23 nmol/√min, respectively. Signal-to-noise ratios (SNRs) of the lactate methyl peak above 120 were obtained from brain tumor microdialysate in an acquisition time of 4 min. On average, the lactate methyl peak amplitude measured in vivo using the nuclear magnetic resonance (NMR) microcoil was 193 ± 46% higher in tumor dialysate relative to healthy brain dialysate. A similar ratio was obtained from high-resolution NMR spectra performed on the collected dialysate. Following oxamate addition in the perfusate, a monotonic decrease in the lactate peaks was observed in all animals with an average time constant of 4.6 min. In the absence of overlapping NMR peaks, robust profiling of extracellular lactate can be obtained online using a dedicated sensitive NMR microcoil. MRS measurements of the dynamic changes in lactate production induced by anti-tumoral drugs can be assessed accurately with temporal resolutions on the order of minutes. The MRS protocol can be readily transferred to the clinical environment with the use of suitable clinical microdialysis probes.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico por imagem , Glioma/metabolismo , Ácido Láctico/biossíntese , Espectroscopia de Ressonância Magnética , Sistemas On-Line , Animais , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Glioma/tratamento farmacológico , Perfusão , Prótons , Ratos Wistar , Fatores de Tempo
13.
Anal Chem ; 89(13): 7190-7194, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28590115

RESUMO

Parahydrogen-induced polarization (PHIP) is a method for enhancing NMR sensitivity. The pairwise addition of parahydrogen in aqueous media by heterogeneous catalysts can lead to applications in chemical and biological systems. Polarization enhancement can be transferred from 1H to 13C for longer lifetimes by using zero field cycling. In this work, water-dispersible N-acetylcysteine- and l-cysteine-stabilized palladium nanoparticles are introduced, and carbon polarizations up to 2 orders of magnitude higher than in previous aqueous heterogeneous PHIP systems are presented. P13C values of 1.2 and 0.2% are achieved for the formation of hydroxyethyl propionate from hydroxyethyl acrylate and ethyl acetate from vinyl acetate, respectively. Both nanoparticle systems are easily synthesized in open air, and TEM indicates an average size of 2.4 ± 0.6 nm for NAC@Pd and 2.5 ± 0.8 nm for LCys@Pd nanoparticles with 40 and 25% ligand coverage determined by thermogravimetric analysis, respectively. As a step toward biological relevance, results are presented for the unprotected amino acid allylglycine upon aqueous hydrogenation of propargylglycine.

14.
Sci Rep ; 6: 36080, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811972

RESUMO

In order to study metabolic processes in animal models of diseases and in patients, microdialysis probes have evolved as powerful tools that are minimally invasive. However, analyses of microdialysate, performed remotely, do not provide real-time monitoring of microdialysate composition. Microdialysate solutions can theoretically be analyzed online inside a preclicinal or clinical MRI scanner using MRS techniques. Due to low NMR sensitivity, acquisitions of real-time NMR spectra on very small solution volumes (µL) with low metabolite concentrations (mM range) represent a major issue. To address this challenge we introduce the approach of combining a microdialysis probe with a custom-built magnetic resonance microprobe that allows for online metabolic analysis (1H and 13C) with high sensitivity under continuous flow conditions. This system is mounted inside an MRI scanner and allows performing simultaneously MRI experiments and rapid MRS metabolic analysis of the microdialysate. The feasibility of this approach is demonstrated by analyzing extracellular brain cancer cells (glioma) in vitro and brain metabolites in an animal model in vivo. We expect that our approach is readily translatable into clinical settings and can be used for a better and precise understanding of diseases linked to metabolic dysfunction.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Microdiálise/métodos , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Desenho de Equipamento , Feminino , Glioblastoma/metabolismo , Humanos , Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Microdiálise/instrumentação , Sistemas On-Line , Ratos , Ratos Wistar
15.
J Magn Reson ; 230: 176-85, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23545292

RESUMO

This paper describes planar micro structured coils fabricated in a novel multilayer assembly for single-sided NMR experiments. By arranging the coil's turns in both lateral and vertical directions, all relevant coil parameters can be tailored to a specific application. To this end, we implemented an optimization algorithm based on simulations applying finite element methods (FEMs), which maximizes the coil's sensitivity and thus signal-to-noise ratio (SNR) while incorporating boundary conditions such as the coil's electrical properties and a localized sensitivity needed for single-sided applications. Utilizing thin-film technology and microstructuring techniques, the planar character is kept by a sub-millimeter overall thickness. The coils are adapted to the Profile NMR-MOUSE® magnet with a homogeneous slice of about 200 µm in height and a uniform depth gradient of about 20T/m. The final design of a coil with 20 turns, separated in four layers with five turns each, and an outer dimension of 4×4 mm(2) is able to measure a sample volume almost five times smaller than that of a state-of-the-art 14×16 mm(2) Profile NMR-MOUSE® coil with the same SNR. This allows for volume-limited measurements with high SNR and enables different future developments. The minimal dead time of 4 µs facilitates further improvements of the SNR by echo adding techniques and the characterization of samples with short T2 relaxation times. Measurements on solid polymers like polyethylene (PE) and polypropylene (PP) with T2 components as short as 200 µs approve the overall beneficial coil properties. Furthermore the ability to perform depth profiling with microscopic resolution is demonstrated.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Transdutores , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Elementos Finitos , Miniaturização , Modelos Teóricos
16.
Phys Chem Chem Phys ; 13(30): 13759-64, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21720644

RESUMO

Signal Amplification by Reversible-Exchange (SABRE) is a method of hyperpolarizing substrates by polarization transfer from para-hydrogen without hydrogenation. Here, we demonstrate that this method can be applied to hyperpolarize small amounts of all proteinogenic amino acids and some chosen peptides down to the nanomole regime and can be detected in a single scan in low-magnetic fields down to 0.25 mT (10 kHz proton frequency). An outstanding feature is that depending on the chemical state of the used catalyst and the investigated amino acid or peptide, hyperpolarized hydrogen-deuterium gas is formed, which was detected with (1)H and (2)H NMR spectroscopy at low magnetic fields of B(0) = 3.9 mT (166 kHz proton frequency) and 3.2 mT (20 kHz deuterium frequency).


Assuntos
Aminoácidos/química , Hidrogênio/química , Peptídeos/química , Deutério/química , Gases/química , Hidrogenação , Espectroscopia de Ressonância Magnética
17.
Analyst ; 136(8): 1566-8, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21331396

RESUMO

Advances with para-hydrogen induced polarization open up new fields of applications for portable low-field NMR. Here we report the possibility of tracing drugs down to the micromolar regime. We could selectively polarize nicotine quantities similar to those found in one cigarette. Also less than 1 mg of harmine, a drug used for treatment of Parkinson's disease, and morphine extracted from an opium solution were detectable after polarization with para-hydrogen in single-scan (1)H-experiments. Moreover, we demonstrate the possibility to selectively enhance and detect the (1)H-signal of drug molecules with PHIP in proton rich standard solutions that would otherwise mask the (1)H NMR signal of the drug.


Assuntos
Resíduos de Drogas/análise , Espectroscopia de Ressonância Magnética/métodos , Harmina/análise , Hidrogênio/química , Morfina/análise , Nicotina/análise , Ópio/química , Nicotiana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA