Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(8): e23621, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38651653

RESUMO

Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males). We obtained dual-leg vastus lateralis (VL) muscle cross-sectional area (mCSA), VL biopsies, and strength assessments before and after training. Fiber cross-sectional area (fCSA), satellite cells (Pax7+), denervated myofibers (NCAM+), senescent cells (p16+ or p21+), proteins associated with denervation and senescence, and senescence-associated secretory phenotype (SASP) proteins were analyzed from biopsy specimens. Leg extensor peak torque increased after training (p < .001), while VL mCSA trended upward (interaction p = .082). No significant changes were observed for Type I/II fCSAs, NCAM+ myofibers, or senescent (p16+ or p21+) cells, albeit satellite cells increased after training (p = .037). While >90% satellite cells were not p16+ or p21+, most p16+ and p21+ cells were Pax7+ (>90% on average). Training altered 13 out of 46 proteins related to muscle-nerve communication (all upregulated, p < .05) and 10 out of 19 proteins related to cellular senescence (9 upregulated, p < .05). Only 1 out of 17 SASP protein increased with training (IGFBP-3, p = .031). In conclusion, resistance training upregulates proteins associated with muscle-nerve communication in MA participants but does not alter NCAM+ myofibers. Moreover, while training increased senescence-related proteins, this coincided with an increase in satellite cells but not alterations in senescent cell content or SASP proteins. These latter findings suggest shorter term resistance training is an unlikely inducer of cellular senescence in apparently healthy middle-aged participants. However, similar study designs are needed in older and diseased populations before definitive conclusions can be drawn.


Assuntos
Senescência Celular , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Senescência Celular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Biomarcadores/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Adulto , Músculo Quadríceps/metabolismo , Músculo Quadríceps/inervação
2.
J Appl Physiol (1985) ; 135(2): 456-466, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391886

RESUMO

Acute enhancement of peripheral O2 diffusion may accelerate skeletal muscle O2 uptake (V̇o2) kinetics and lessen fatigue during transitions from rest to maximal contractions. Surgically isolated canine gastrocnemius muscles in situ (n = 6) were studied during transitions from rest to 4 min of electrically stimulated isometric tetanic contractions at V̇o2peak, in two conditions: normoxia (CTRL) and hyperoxia ([Formula: see text] = 1.00) + administration of a drug (RSR-13), which right shifts the Hb-O2 dissociation curve (Hyperoxia + RSR-13). Before and during contractions, muscles were pump-perfused with blood at constant elevated flow ([Formula: see text]) and infused with the vasodilator adenosine. Arterial ([Formula: see text]) and muscle venous ([Formula: see text]) O2 concentrations were determined at rest and at 5- to 7-s intervals during contractions; V̇o2 was calculated as [Formula: see text]·([Formula: see text] - [Formula: see text]). Po2 at 50% of Hb saturation (standard P50) and mean microvascular Po2 ([Formula: see text]) were calculated by the Hill equation and a numerical integration technique. P50 [42 ± 7 (means ± SD) mmHg vs. 33 ± 2 mmHg, P = 0.02] and [Formula: see text] (218 ± 73 mmHg vs. 49 ± 4 mmHg, P = 0.003) were higher in Hyperoxia + RSR-13. Muscle force and fatigue were not different in the two conditions. V̇o2 kinetics (monoexponential fitting) were unexpectedly slower in Hyperoxia + RSR-13, due to a longer time delay (TD) [9.9 ± 1.7 s vs. 4.4 ± 2.2 s (P = 0.001)], whereas the time constant (τ) was not different [13.7 ± 4.3 s vs. 12.3 ± 1.9 s (P = 0.37)]; the mean response time (TD + τ) was longer in Hyperoxia + RSR-13 [23.6 ± 3.5 s vs. 16.7 ± 3.2 s (P = 0.003)]. Increased O2 availability deriving, in Hyperoxia + RSR-13, from higher [Formula: see text] and from presumably greater intramuscular O2 stores did not accelerate the primary component of the V̇o2 kinetics, and delayed the metabolic activation of oxidative phosphorylation.NEW & NOTEWORTHY In isolated perfused skeletal muscle, during transitions from rest to V̇o2peak, hyperoxia and a right-shifted oxyhemoglobin dissociation curve increased O2 availability by increasing microvascular Po2 and by presumably increasing intramuscular O2 stores. The interventions did not accelerate the primary component of the V̇o2 kinetics (as calculated from blood O2 unloading) and delayed the metabolic activation of oxidative phosphorylation. V̇o2 kinetics appear to be mainly controlled by intramuscular factors related to the use of high-energy "buffers."


Assuntos
Hiperóxia , Animais , Cães , Hiperóxia/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Músculo Esquelético/fisiologia , Cinética
3.
J Appl Physiol (1985) ; 134(3): 491-507, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633866

RESUMO

We sought to determine if the myofibrillar protein synthetic (MyoPS) response to a naïve resistance exercise (RE) bout, or chronic changes in satellite cell number and muscle ribosome content, were associated with hypertrophic outcomes in females or differed in those who classified as higher (HR) or lower (LR) responders to resistance training (RT). Thirty-four untrained college-aged females (23.4 ± 3.4 kg/m2) completed a 10-wk RT protocol (twice weekly). Body composition and leg imaging assessments, a right leg vastus lateralis biopsy, and strength testing occurred before and following the intervention. A composite score, which included changes in whole body lean/soft tissue mass (LSTM), vastus lateralis (VL) muscle cross-sectional area (mCSA), midthigh mCSA, and deadlift strength, was used to delineate upper and lower HR (n = 8) and LR (n = 8) quartiles. In all participants, training significantly (P < 0.05) increased LSTM, VL mCSA, midthigh mCSA, deadlift strength, mean muscle fiber cross-sectional area, satellite cell abundance, and myonuclear number. Increases in LSTM (P < 0.001), VL mCSA (P < 0.001), midthigh mCSA (P < 0.001), and deadlift strength (P = 0.001) were greater in HR vs. LR. The first-bout 24-hour MyoPS response was similar between HR and LR (P = 0.367). While no significant responder × time interaction existed for muscle total RNA concentrations (i.e., ribosome content) (P = 0.888), satellite cell abundance increased in HR (P = 0.026) but not LR (P = 0.628). Pretraining LSTM (P = 0.010), VL mCSA (P = 0.028), and midthigh mCSA (P < 0.001) were also greater in HR vs. LR. Female participants with an enhanced satellite cell response to RT, and more muscle mass before RT, exhibited favorable resistance training adaptations.NEW & NOTEWORTHY This study continues to delineate muscle biology differences between lower and higher responders to resistance training and is unique in that a female population was interrogated. As has been reported in prior studies, increases in satellite cell numbers are related to positive responses to resistance training. Satellite cell responsivity, rather than changes in muscle ribosome content per milligrams of tissue, may be a more important factor in delineating resistance-training responses in women.


Assuntos
Doenças Musculares , Treinamento Resistido , Humanos , Adulto , Feminino , Adulto Jovem , Treinamento Resistido/métodos , Fibras Musculares Esqueléticas/fisiologia , Músculo Quadríceps , Exercício Físico , Músculo Esquelético/fisiologia , Força Muscular/fisiologia
4.
Am J Physiol Cell Physiol ; 321(5): C761-C769, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495762

RESUMO

The precise matching of blood flow to skeletal muscle during exercise remains an important area of investigation. Release of adenosine triphosphate (ATP) from red blood cells (RBCs) is postulated as a mediator of peripheral vascular tone in response to shear stress, hypoxia, and mechanical deformation. We tested the following hypotheses: 1) RBCs of different densities contain different quantities of ATP; 2) hypoxia is a stimulus for ATP release from RBCs; and 3) hypoxic ATP release from RBCs is related to RBC lysis. Human blood was drawn from male and female volunteers (n = 11); the RBCs were isolated and washed. A Percoll gradient was used to separate RBCs based on cellular density. Density groups were then resuspended to 4% hematocrit and exposed to normoxia or hypoxia in a tonometer. Equilibrated samples were drawn and centrifuged; paired analyses of ATP (luminescence via a luciferase-catalyzed reaction) and hemolysis (Harboe spectrophotometric absorbance assay) were measured in the supernatant. ATP release was not different among low-density cells versus middle-density versus high-density cells. Similarly, hemoglobin (Hb) release was not different among the red blood cell subsets. No difference was found for either ATP release or Hb release following matched exposure to normoxic or hypoxic gas. The concentrations of ATP and Hb for all subsets combined were linearly correlated (r = 0.59, P ≤ 0.001). With simultaneous probing for Hb and ATP in the supernatant of each sample, we conclude that ATP release from RBCs can be explained by hemolysis and that hypoxia per se does not stimulate either ATP release or Hb release from RBCs.


Assuntos
Trifosfato de Adenosina/sangue , Eritrócitos/metabolismo , Hemólise , Adulto , Hipóxia Celular , Feminino , Hemoglobinas/metabolismo , Humanos , Masculino , Adulto Jovem
5.
Front Neurosci ; 14: 920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013305

RESUMO

Here, we provide an overview of the concept of a lactate-protected hypoglycemia ("LPH"), originally proposed as lowering glucose while simultaneously increasing lactate concentration as a method by which tumors might be targeted. Central to this hypothesis is that lactate can act as a critical salvage fuel for the central nervous system, allowing for wide perturbations in whole body and central nervous system glucose concentrations. Further, many tumors exhibit "the Warburg" effect, consuming glucose and producing and exporting lactate despite adequate oxygenation. While some recent data have provided evidence for a "reverse-Warburg," where some tumors may preferentially consume lactate, many of these experimental methods rely on a significant elevation in lactate in the tumor microenvironment. To date it remains unclear how various tumors behave in vivo, and how they might respond to perturbations in lactate and glucose concentrations or transport inhibition. By exploiting and targeting lactate transport and metabolism in tumors (with a combination of changes in lactate and glucose concentrations, transport inhibitors, etc.), we can begin developing novel methods for targeting otherwise difficult to treat pathologies in the brain and spinal cord. Here we discuss evidence both experimental and observational, and provide direction for next steps in developing therapies based on these concepts.

6.
J Physiol ; 598(12): 2371-2384, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32537774

RESUMO

KEY POINTS: Increased plasma nitrite concentrations may have beneficial effects on skeletal muscle function. The physiological basis explaining these observations has not been clearly defined and it may involve positive effects on muscle contraction force, microvascular O2 delivery and skeletal muscle oxidative metabolism. In the isolated canine gastrocnemius model, we evaluated the effects of acute nitrite infusion on muscle force and skeletal muscle oxidative metabolism. Under hypoxic conditions, but in the presence of normal convective O2 delivery, an elevated plasma nitrite concentration affects neither muscle force, nor muscle contractile economy. In accordance with previous results suggesting limited or no effects of nitrate/nitrite administrations in highly oxidative and highly perfused muscle, our data suggest that neither mitochondrial respiration, nor muscle force generation are affected by acute increased concentrations of NO precursors in hypoxia. ABSTRACT: Contrasting findings have been reported concerning the effects of augmented nitric oxide (NO) on skeletal muscle force production and oxygen consumption ( V̇O2 ). The present study examined skeletal muscle mitochondrial respiration and contractile economy in an isolated muscle preparation during hypoxia (but normal convective O2 delivery) with nitrite infusion. Isolated canine gastrocnemius muscles in situ (n = 8) were studied during 3 min of electrically stimulated isometric tetanic contractions corresponding to ∼35% of V̇O2peak . During contractions, sodium nitrite (NITRITE) or sodium chloride (SALINE) was infused into the popliteal artery. V̇O2 was calculated from the Fick principle. Experiments were carried out in hypoxia ( FIO2  = 0.12), whereas convective O2 delivery was maintained at normal levels under both conditions by pump-driven blood flow ( Q̇ ). Muscle biopsies were taken and mitochondrial respiration was evaluated by respirometry. Nitrite infusion significantly increased both nitrite and nitrate concentrations in plasma. No differences in force were observed between conditions. V̇O2 was not significantly different between NITRITE (6.1 ± 1.8 mL 100 g-1  min-1 ) and SALINE (6.2 ± 1.8 mL 100 g-1  min-1 ), even after being 'normalized' per unit of developed force (muscle contractile economy). No differences between conditions were found for maximal ADP-stimulated mitochondrial respiration (both for complex I and complex II), leak respiration and oxidative phosphorylation coupling. In conclusion, in the absence of changes in convective O2 delivery, muscle force, muscle contractile economy and mitochondrial respiration were not affected by acute infusion of nitrite. The previously reported positive effects of elevated plasma nitrite concentrations are presumably mediated by the increased microvascular O2 availability.


Assuntos
Contração Muscular , Oxigênio , Animais , Cães , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio
7.
Ann Transl Med ; 7(10): 210, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31302666
8.
Eur J Appl Physiol ; 118(4): 691-728, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29322250

RESUMO

Lactate (La-) has long been at the center of controversy in research, clinical, and athletic settings. Since its discovery in 1780, La- has often been erroneously viewed as simply a hypoxic waste product with multiple deleterious effects. Not until the 1980s, with the introduction of the cell-to-cell lactate shuttle did a paradigm shift in our understanding of the role of La- in metabolism begin. The evidence for La- as a major player in the coordination of whole-body metabolism has since grown rapidly. La- is a readily combusted fuel that is shuttled throughout the body, and it is a potent signal for angiogenesis irrespective of oxygen tension. Despite this, many fundamental discoveries about La- are still working their way into mainstream research, clinical care, and practice. The purpose of this review is to synthesize current understanding of La- metabolism via an appraisal of its robust experimental history, particularly in exercise physiology. That La- production increases during dysoxia is beyond debate, but this condition is the exception rather than the rule. Fluctuations in blood [La-] in health and disease are not typically due to low oxygen tension, a principle first demonstrated with exercise and now understood to varying degrees across disciplines. From its role in coordinating whole-body metabolism as a fuel to its role as a signaling molecule in tumors, the study of La- metabolism continues to expand and holds potential for multiple clinical applications. This review highlights La-'s central role in metabolism and amplifies our understanding of past research.


Assuntos
Astrócitos/metabolismo , Metabolismo Energético/fisiologia , Ácido Láctico/metabolismo , Neurônios/metabolismo , Exercício Físico/fisiologia , Humanos , Hipóxia/metabolismo
10.
Am J Physiol Regul Integr Comp Physiol ; 303(11): R1110-26, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22972834

RESUMO

On the basis of experimental studies, the intracellular O(2) (iPo(2))-work rate (WR) relationship in skeletal muscle is not unique. One study found that iPo(2) reached a plateau at 60% of maximal WR, while another found that iPo(2) decreased linearly at higher WR, inferring capillary permeability-surface area (PS) and blood-tissue O(2) gradient, respectively, as alternative dominant factors for determining O(2) diffusion changes during exercise. This relationship is affected by several factors, including O(2) delivery and oxidative and glycolytic capacities of the muscle. In this study, these factors are examined using a mechanistic, mathematical model to analyze experimental data from contracting skeletal muscle and predict the effects of muscle contraction on O(2) transport, glycogenolysis, and iPo(2). The model describes convection, O(2) diffusion, and cellular metabolism, including anaerobic glycogenolysis. Consequently, the model simulates iPo(2) in response to muscle contraction under a variety of experimental conditions. The model was validated by comparison of simulations of O(2) uptake with corresponding experimental responses of electrically stimulated canine muscle under different O(2) content, blood flow, and contraction intensities. The model allows hypothetical variation of PS, glycogenolytic capacity, and blood flow and predictions of the distinctive effects of these factors on the iPo(2)-contraction intensity relationship in canine muscle. Although PS is the main factor regulating O(2) diffusion rate, model simulations indicate that PS and O(2) gradient have essential roles, depending on the specific conditions. Furthermore, the model predicts that different convection and diffusion patterns and metabolic factors may be responsible for different iPo(2)-WR relationships in humans.


Assuntos
Metabolismo Energético/fisiologia , Modelos Biológicos , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Simulação por Computador , Cães , Glucose/metabolismo , Humanos , Oxigênio/metabolismo , Reprodutibilidade dos Testes
11.
Cell Cycle ; 10(15): 2421-2, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21734458
12.
J Physiol ; 589(Pt 16): 3995-4009, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21690197

RESUMO

Fast kinetics of muscle oxygen consumption (VO2) is characteristic of effective physiological systems integration. The mechanism of VO2 kinetic control in vivo is equivocal as measurements are complicated by the twin difficulties of making high-frequency direct measurements of VO2 and intramuscular metabolites, and in attaining high [ADP]; complexities that can be overcome utilising highly aerobic canine muscle for the investigation of the transition from rest to contractions at maximal VO2. Isometric tetanic contractions of the gastrocnemius complex of six anaesthetised, ventilated dogs were elicited via sciatic nerve stimulation (50 Hz; 200 ms duration; 1 contraction s(−1)). Muscle VO2 and lactate efflux were determined from direct Fick measurements. Muscle biopsies were taken at rest and every ∼10 s during the transient and analysed for [phosphates], [lactate] and pH. The temporal VO2 vs. [PCr] and [ADP] relationships were not well fitted by linear or classical hyperbolic models (respectively), due to the high sensitivity of VO2 to metabolic perturbations early in the transient. The time course of this apparent sensitisation was closely aligned to that of ATP turnover, which was lower in the first ∼25 s of contractions compared to the steady state. These findings provide the first direct measurements of skeletal muscle VO2 and [PCr] in the non-steady state, and suggest that simple phosphate feedback models (which are adequate for steady-state observations in vitro) are not sufficient to explain the dynamic control of VO2 in situ. Rather an allosteric or 'parallel activation' mechanism of energy consuming and producing processes is required to explain the kinetic control of VO2 in mammalian skeletal muscle.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Animais , Cães , Estimulação Elétrica/métodos , Feminino , Cinética , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiologia
13.
J Physiol ; 589(Pt 1): 221-33, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21059760

RESUMO

Creatine kinase (CK) plays a key role both in energy provision and in signal transduction for the increase in skeletal muscle O2 uptake () at exercise onset. The effects of acute CK inhibition by iodoacetamide (IA; 5 mm) on kinetics were studied in isolated canine gastrocnemius muscles in situ (n = 6) during transitions from rest to 3 min of electrically stimulated contractions eliciting ∼70% of muscle peak , and were compared to control (Ctrl) conditions. In both IA and Ctrl muscles were pump-perfused with constantly elevated blood flows. Arterial and venous [O2] were determined at rest and every 5-7 s during contractions. was calculated by Fick's principle. Muscle biopsies were obtained at rest and after ∼3 min of contractions. Muscle force was measured continuously. There was no fatigue in Ctrl (final force/initial force (fatigue index, FI) = 0.97 ± 0.06 (x ± s.d.)), whereas in IA force was significantly lower during the first contractions, slightly recovered at 15-20 s and then decreased (FI 0.67 ± 0.17). [Phosphocreatine] was not different in the two conditions at rest, and decreased during contractions in Ctrl, but not in IA. at 3 min was lower in IA (4.7 ± 2.9 ml 100 g-1 min-1) vs. Ctrl (16.6 ± 2.5 ml 100 g-1 min-1). The time constant (τ) of kinetics was faster in IA (8.1 ± 4.8 s) vs. Ctrl (16.6 ± 2.6 s). A second control condition (Ctrl-Mod) was produced by modelling a response that accounted for the 'non-square' force profile in IA, which by itself could have influenced kinetics. However, τ in IA was faster than in Ctrl-Mod (13.8 ± 2.8 s). The faster kinetics due to IA suggest that in mammalian skeletal muscle in situ, following contractions onset, temporal energy buffering by CK slows the kinetics of signal transduction for the activation of oxidative phosphorylation.


Assuntos
Creatina Quinase Forma MM/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Iodoacetamida/farmacologia , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Oxigênio/metabolismo , Animais , Biópsia , Creatina Quinase Forma MM/metabolismo , Cães , Estimulação Elétrica , Feminino , Técnicas In Vitro , Cinética , Masculino , Modelos Biológicos , Força Muscular , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/enzimologia , Músculo Esquelético/inervação , Fosforilação Oxidativa , Perfusão , Fosfocreatina/metabolismo , Fluxo Sanguíneo Regional , Regulação para Cima
14.
J Appl Physiol (1985) ; 105(2): 575-80, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18483168

RESUMO

The "slow component" of O2 uptake (VO2) kinetics during constant-load heavy-intensity exercise is traditionally thought to derive from a progressive recruitment of muscle fibers. In this study, which represents a reanalysis of data taken from a previous study by our group (Grassi B, Hogan MC, Greenhaff PL, Hamann JJ, Kelley KM, Aschenbach WG, Constantin-Teodosiu D, Gladden LB. J Physiol 538: 195-207, 2002) we evaluated the presence of a slow component-like response in the isolated dog gastrocnemius in situ (n=6) during 4 min of contractions at approximately 60-70% of peak VO2. In this preparation all muscle fibers are maximally activated by electrical stimulation from the beginning of the contraction period, and no progressive recruitment of fibers is possible. Muscle VO2 was calculated as blood flow multiplied by arteriovenous O2 content difference. The muscle fatigued (force decreased by approximately 20-25%) during contractions. Kinetics of adjustment were evaluated for 1) VO2, uncorrected for force development; 2) VO2 normalized for peak force; 3) VO2 normalized for force-time integral. A slow component-like response, described in only one muscle out of six when uncorrected VO2 was considered, was observed in all muscles when VO2/peak force and VO2/force-time were considered. The amplitude of the slow component-like response, expressed as a fraction of the total response, was higher for VO2/peak force (0.18+/-0.06, means+/-SE) and for VO2/force-time (0.22+/-0.05) compared with uncorrected VO2 (0.04+/-0.04). A progressive recruitment of muscle fibers may not be necessary for the development of the slow component of VO2 kinetics, which may be caused by the metabolic factors that induce muscle fatigue and, as a consequence, reduce the efficiency of muscle contractions.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Consumo de Oxigênio/fisiologia , Recrutamento Neurofisiológico/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cães , Estimulação Elétrica , Metabolismo Energético/fisiologia , Cinética , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Fluxo Sanguíneo Regional/fisiologia
15.
Exp Physiol ; 90(6): 873-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16118234

RESUMO

In isolated single skeletal myocytes undergoing long-term fatiguing contractions, caffeine (CAF) can result in nearly immediate restoration of generated tension to near-prefatigue levels by increasing Ca2+ release via activation of sarcoplasmic reticulum release channels. This study tested whether arterial CAF infusion (>5 mm) would cause a similar rapid restoration of tetanic isometric tension during contractions to fatigue in perfused canine hindlimb muscle in situ. Tetanic contractions were elicited by electrical stimulation (200 ms trains, 50 Hz, 1 contraction s(-1)), and biopsies were taken from the muscle at rest and during contractions: (1) following the onset of fatigue (tension approximately 60% of initial value); and (2) following CAF administration. Resting muscle ATP, PCr and lactate contents were 25.2 +/- 0.4, 76.9 +/- 3.3 and 14.4 +/- 3.3 mmol (kg dry weight)(-1), respectively. At fatigue, generated tetanic tension was 61.1 +/- 6.9% of initial contractions. There was a small but statistically significant recovery of tetanic tension (64.9 +/- 6.6% of initial value) with CAF infusion, after which the muscle showed incomplete relaxation. At fatigue, muscle ATP and PCr contents had fallen significantly (P < 0.05) to 18.1 +/- 1.1 and 18.9 +/- 2.1 mmol (kg dry weight)(-1), respectively, and lactate content had increased significantly to 27.7 +/- 5.4 mmol (kg dry weight)(-1). Following CAF, skeletal muscle ATP and PCr contents were significantly lower than corresponding fatigue values (15.0 +/- 1.3 and 10.9 +/- 2.2 mmol (kg dry weight)(-1), respectively), while lactate was unchanged (22.2 +/- 3.9 mmol (kg dry weight)(-1)). These results demonstrate that caffeine can result in a small, but statistically significant, recovery of isometric tension in fatigued canine hindlimb muscle in situ, although not nearly to the same degree as seen in isolated single muscle fibres. This suggests that, in this in situ isolated whole muscle model, alteration of Ca2+ metabolism is probably only one cause of fatigue.


Assuntos
Cafeína/farmacologia , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cães , Estimulação Elétrica , Membro Posterior , Ácido Láctico/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/efeitos dos fármacos , Fosfocreatina/metabolismo , Nervo Isquiático/fisiologia
16.
J Appl Physiol (1985) ; 94(1): 11-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12391133

RESUMO

The purpose of this investigation was to examine the effect of rhythmic tetanic skeletal muscle contractions on peak muscle perfusion by using spontaneously perfused canine gastrocnemii in situ. Simultaneous pulsatile blood pressures were measured by means of transducers placed in the popliteal artery and vein, and pulsatile flow was measured with a flow-through-type transit-time ultrasound probe placed in the venous return line. Two series of experiments were performed. In series 1, maximal vasodilation of the muscles' vascular beds was elicited by infusing a normal saline solution containing adenosine (29.3 mg/min) and sodium nitroprusside (180 microg/min) for 15 s and then simultaneously occluding both the popliteal artery and vein for 5 min. The release of occlusion initiated a maximal hyperemic response, during which time four tetanic contractions were induced with supramaximal voltage (6-8 V, 0.2-ms stimuli for 200-ms duration at 50 Hz, 1/s). In series 2, the muscles were stimulated for 3 min before the muscle contractions were stopped for a period of 3 s; stimulation was then resumed. The results of series 1 indicate that, although contractions lowered venous pressure, muscle blood flow was significantly reduced from 2,056 +/- 246 to 1,738 +/- 225 ml x kg(-1) x min(-1) when contractions were initiated and then increased significantly to 1,925 +/- 225 ml x kg(-1) x min(-1) during the first 5 s after contractions were stopped. In series 2, blood flow after 3 min of contractions averaged 1,454 +/- 149 ml x kg(-1) x min(-1). Stopping the contractions for 3 s caused blood flow to increase significantly to 1,874 +/- 172 ml x kg(-1) x min(-1); blood flow declined significantly to 1,458 +/- 139 ml x kg(-1) x min(-1) when contractions were resumed. We conclude that the mechanical action of rhythmic, synchronous, maximal isometric tetanic skeletal muscle contractions inhibits peak muscle perfusion during maximal and near-maximal vasodilation of the muscle's vascular bed. This argues against a primary role for the muscle pump in achieving peak skeletal muscle blood flow.


Assuntos
Contração Isométrica/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Periodicidade , Adenosina/farmacologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Cães , Estimulação Elétrica , Feminino , Masculino , Nitroprussiato/farmacologia , Fluxo Sanguíneo Regional/fisiologia , Cloreto de Sódio/farmacologia , Vasodilatação , Vasodilatadores/farmacologia , Pressão Venosa/fisiologia
17.
J Physiol ; 538(Pt 1): 195-207, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11773328

RESUMO

The aim of the present study was to determine whether the activation of the pyruvate dehydrogenase complex (PDC) by dichloroacetate (DCA) is associated with faster O(2) uptake (V(O2)) on-kinetics. V(O2) on-kinetics was determined in isolated canine gastrocnemius muscles in situ (n = 6) during the transition from rest to 4 min of electrically stimulated isometric tetanic contractions, corresponding to approximately 60-70 % of peak V(O2). Two conditions were compared: (1) control (saline infusion, C); and (2) DCA infusion (300 mg (kg body mass)(-1), 45 min before contraction). Muscle blood flow (Q) was measured continuously in the popliteal vein; arterial and popliteal vein O(2) contents were measured at rest and at 5-7 s intervals during the transition. Muscle V(O2) was calculated as Q multiplied by the arteriovenous O(2) content difference. Muscle biopsies were taken before and at the end of contraction for determination of muscle metabolite concentrations. DCA activated PDC at rest, as shown by the 9-fold higher acetylcarnitine concentration in DCA (vs. C; P < 0.0001). Phosphocreatine degradation and muscle lactate accumulation were not significantly different between C and DCA. DCA was associated with significantly less muscle fatigue. Resting and steady-state V(O2) values during contraction were not significantly different between C and DCA. The time to reach 63 % of the V(O2) difference between the resting baseline and the steady-state V(O2) values during contraction was 22.3 +/- 0.5 s in C and 24.5 +/- 1.4 s in DCA (n.s.). In this experimental model, activation of PDC by DCA resulted in a stockpiling of acetyl groups at rest and less muscle fatigue, but it did not affect 'anaerobic' energy provision and V(O2) on-kinetics.


Assuntos
Ácido Dicloroacético/farmacologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Complexo Piruvato Desidrogenase/metabolismo , Acetilcarnitina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cães , Ativação Enzimática/fisiologia , Feminino , Homeostase , Técnicas In Vitro , Cinética , Ácido Láctico/metabolismo , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA