Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(10): 2428-2442, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35076152

RESUMO

Invasions by fungal plant pathogens pose a significant threat to the health of agricultural ecosystems. Despite limited standing genetic variation, many invasive fungal species can adapt and spread rapidly, resulting in significant losses to crop yields. Here, we report on the population genomics of Colletotrichum truncatum, a polyphagous pathogen that can infect more than 460 plant species, and an invasive pathogen of soybean in Brazil. We study the whole-genome sequences of 18 isolates representing 10 fields from two major regions of soybean production. We show that Brazilian C. truncatum is subdivided into three phylogenetically distinct lineages that exchange genetic variation through hybridization. Introgression affects 2%-30% of the nucleotides of genomes and varies widely between the lineages. We find that introgressed regions comprise secreted protein-encoding genes, suggesting possible co-evolutionary targets for selection in those regions. We highlight the inherent vulnerability of genetically uniform crops in the agro-ecological environment, particularly when faced with pathogens that can take full advantage of the opportunities offered by an increasingly globalized world. Finally, we discuss "the means, motive and opportunity" of fungal pathogens and how they can become invasive species of crops. We call for more population genomic studies because such analyses can help identify geographical areas and pathogens that pose a risk, thereby helping to inform control strategies to better protect crops in the future.


Assuntos
Ecossistema , Introgressão Genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Evolução Biológica , Glycine max/genética , Glycine max/microbiologia
2.
Phytopathology ; 111(12): 2355-2366, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33829853

RESUMO

Many fungal plant pathogens encompass multiple populations specialized on different plant species. Understanding the factors underlying pathogen adaptation to their hosts is a major challenge of evolutionary microbiology, and it should help to prevent the emergence of new specialized pathogens on novel hosts. Previous studies have shown that French populations of the gray mold pathogen Botrytis cinerea parasitizing tomato and grapevine are differentiated from each other, and have higher aggressiveness on their host of origin than on other hosts, indicating some degree of host specialization in this polyphagous pathogen. Here, we aimed at identifying the genomic features underlying the specialization of B. cinerea populations to tomato and grapevine. Based on whole genome sequences of 32 isolates, we confirmed the subdivision of B. cinerea pathogens into two genetic clusters on grapevine and another, single cluster on tomato. Levels of genetic variation in the different clusters were similar, suggesting that the tomato-specific cluster has not recently emerged following a bottleneck. Using genome scans for selective sweeps and divergent selection, tests of positive selection based on polymorphism and divergence at synonymous and nonsynonymous sites, and analyses of presence and absence variation, we identified several candidate genes that represent possible determinants of host specialization in the tomato-associated population. This work deepens our understanding of the genomic changes underlying the specialization of fungal pathogen populations.


Assuntos
Botrytis , Solanum lycopersicum , Botrytis/genética , França , Genética Populacional , Solanum lycopersicum/microbiologia , Metagenômica , Doenças das Plantas/microbiologia
3.
Environ Microbiol ; 21(12): 4808-4821, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31608584

RESUMO

The host plant is often the main variable explaining population structure in fungal plant pathogens, because specialization contributes to reduce gene flow between populations associated with different hosts. Previous population genetic analysis revealed that French populations of the grey mould pathogen Botrytis cinerea were structured by hosts tomato and grapevine, suggesting host specialization in this highly polyphagous pathogen. However, these findings raised questions about the magnitude of this specialization and the possibility of specialization to other hosts. Here we report specialization of B. cinerea populations to tomato and grapevine hosts but not to other tested plants. Population genetic analysis revealed two pathogen clusters associated with tomato and grapevine, while the other clusters co-occurred on hydrangea, strawberry and bramble. Measurements of quantitative pathogenicity were consistent with host specialization of populations found on tomato, and to a lesser extent, populations found on grapevine. Pathogen populations from hydrangea and strawberry appeared to be generalist, while populations from bramble may be weakly specialized. Our results suggest that the polyphagous B. cinerea is more accurately described as a collection of generalist and specialist individuals in populations. This work opens new perspectives for grey mould management, while suggesting spatial optimization of crop organization within agricultural landscapes.


Assuntos
Botrytis/fisiologia , Doenças das Plantas/microbiologia , Botrytis/genética , Fragaria/microbiologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Solanum lycopersicum/microbiologia , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA