Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pathogens ; 9(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228257

RESUMO

Plant viruses are important pathogens that cause significant crop losses. A plant protein extraction protocol that combines crushing the tissue by a pestle in liquid nitrogen with subsequent crushing by a roller-ball crusher in urea solution, followed by RuBisCO depletion, reduction, alkylation, protein digestion, and ZipTip purification allowed us to substantially simplify the sample preparation by removing any other precipitation steps and to detect viral proteins from samples, even with less than 0.2 g of leaf tissue, by a medium resolution nanoLC-ESI-Q-TOF. The presence of capsid proteins or polyproteins of fourteen important viruses from seven different families (Geminiviridae, Luteoviridae, Bromoviridae, Caulimoviridae, Virgaviridae, Potyviridae, and Secoviridae) isolated from ten different economically important plant hosts was confirmed through many identified pathogen-specific peptides from a protein database of host proteins and potential pathogen proteins assembled separately for each host and based on existing online plant virus pathogen databases. The presented extraction protocol, combined with a medium resolution LC-MS/MS, represents a cost-efficient virus protein confirmation method that proved to be effective at identifying virus strains (as demonstrated for PPV, WDV) and distinct disease species of BYDV, as well as putative new viral protein sequences from single-plant-leaf tissue samples. Data are available via ProteomeXchange with identifier PXD022456.

2.
Life (Basel) ; 10(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947896

RESUMO

Euonymus species from the Celastraceae family are considered as a source of unusual genes modifying the oil content and fatty acid composition of vegetable oils. Due to the possession of genes encoding enzyme diacylglycerol acetyltransferase (DAcT), Euonymus plants can synthesize and accumulate acetylated triacyglycerols. The gene from Euonymus europaeus (EeDAcT) encoding the DAcT was identified, isolated, characterized, and modified for cloning and genetic transformation of plants. This gene has a unique nucleotide sequence and amino acid composition, different from orthologous genes from other Euonymus species. Nucleotide sequence of original EeDAcT gene was modified, cloned into transformation vector, and introduced into tobacco plants. Overexpression of EeDAcT gene was confirmed, and transgenic host plants produced and accumulated acetylated triacylglycerols (TAGs) in immature seeds. Individual transgenic plants showed difference in amounts of synthesized acetylTAGs and also in fatty acid composition of acetylTAGs.

3.
Plants (Basel) ; 9(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31887986

RESUMO

Ribosomal RNA-depleted total RNAs from a sweet pepper plant (Capsicum annuum, labelled as N65) grown in western Slovakia and showing severe virus-like symptoms (chlorosis, mottling and deformation of leaf lamina) were subjected to high-throughput sequencing (HTS) on an Illumina MiSeq platform. The de novo assembly of ca. 5.5 million reads, followed by mapping to the reference sequences, revealed the coinfection of pepper by several viruses; i.e., cucumber mosaic virus (CMV), watermelon mosaic virus (WMV), pepper cryptic virus 2 (PCV2) and bell pepper endornavirus (BPEV). A complete polyprotein-coding genomic sequence (14.6 kb) of BPEV isolate N65 was determined. A comparison of BPEV-N65 sequences with BPEV genomes available in GenBank showed 86.1% to 98.6% identity at the nucleotide level. The close phylogenetic relationship with isolates from India and China resulted in their distinct grouping compared to the other BPEV isolates. Further analysis has revealed the presence of BPEV in sweet or chili peppers obtained from various sources and locations in Slovakia (plants grown in gardens, greenhouse or retail shop). Additionally, the partial sequencing of two genomic portions from 15 BPEV isolates revealed that the Slovak isolates segregated into two molecular clusters, indicating a genetically distinct population (mean inter-group nucleotide divergence reaching 12.7% and 14.5%, respectively, based on the genomic region targeted). Due to the mix infections of BPEV-positive peppers by potato virus Y (PVY) and/or CMV, the potential role of individual viruses in the observed symptomatology could not be determined. This is the first evidence and characterization of BPEV from the central European region.

4.
J Proteome Res ; 17(9): 3114-3127, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30084641

RESUMO

Plum pox virus (PPV, family Potyviridae) is one of the most important viral pathogens of Prunus spp. causing considerable damage to stone-fruit industry worldwide. Among the PPV strains identified so far, only PPV-C, PPV-CR, and PPV-CV are able to infect cherries under natural conditions. Herein, we evaluated the pathogenic potential of two viral isolates in herbaceous host Nicotiana benthamiana. Significantly higher accumulation of PPV capsid protein in tobacco leaves infected with PPV-CR (RU-30sc isolate) was detected in contrast to PPV-C (BY-101 isolate). This result correlated well with the symptoms observed in the infected plants. To further explore the host response upon viral infection at the molecular level, a comprehensive proteomic profiling was performed. Using reverse-phase ultra-high-performance liquid chromatography followed by label-free mass spectrometry quantification, we identified 38 unique plant proteins as significantly altered due to the infection. Notably, the abundances of photosynthesis-related proteins, mainly from the Calvin-Benson cycle, were found more aggressively affected in plants infected with PPV-CR isolate than those of PPV-C. This observation was accompanied by a significant reduction in the amount of photosynthetic pigments extracted from the leaves of PPV-CR infected plants. Shifts in the abundance of proteins that are involved in stimulation of photosynthetic capacity, modification of amino acid, and carbohydrate metabolism may affect plant growth and initiate energy formation via gluconeogenesis in PPV infected N. benthamiana. Furthermore, we suggest that the higher accumulation of H2O2 in PPV-CR infected leaves plays a crucial role in plant defense and development by activating the glutathione synthesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Nicotiana/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Vírus Eruptivo da Ameixa/patogenicidade , Carotenoides/biossíntese , Clorofila/biossíntese , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Metabolismo Energético/genética , Genótipo , Glutationa/biossíntese , Proteínas de Choque Térmico/classificação , Proteínas de Choque Térmico/metabolismo , Interações Hospedeiro-Patógeno/genética , Peróxido de Hidrogênio/metabolismo , Espectrometria de Massas , Oxirredução , Fotossíntese/genética , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Vírus Eruptivo da Ameixa/classificação , Vírus Eruptivo da Ameixa/genética , Vírus Eruptivo da Ameixa/crescimento & desenvolvimento , Prunus avium/virologia , Prunus domestica/virologia , Nicotiana/metabolismo , Nicotiana/virologia
5.
Viruses ; 10(8)2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110973

RESUMO

In recent years, the accumulated molecular data of Turnip mosaic virus (TuMV) isolates from various hosts originating from different parts of the world considerably helped to understand the genetic complexity and evolutionary history of the virus. In this work, four complete TuMV genomes (HC9, PK1, MS04, MS15) were characterised from naturally infected cultivated and wild-growing Papaver spp., hosts from which only very scarce data were available previously. Phylogenetic analyses showed the affiliation of Slovak Papaver isolates to the world-B and basal-B groups. The PK1 isolate showed a novel intra-lineage recombination pattern, further confirming the important role of recombination in the shaping of TuMV genetic diversity. Biological assays indicated that the intensity of symptoms in experimentally inoculated oilseed poppy are correlated to TuMV accumulation level in leaves. This is the first report of TuMV in poppy plants in Slovakia.


Assuntos
Genoma Viral , Papaver/virologia , Filogenia , Doenças das Plantas/virologia , Potyvirus/genética , Vírus Reordenados/genética , Evolução Biológica , Expressão Gênica , Variação Genética , Folhas de Planta/virologia , Poliproteínas/genética , Potyvirus/classificação , Potyvirus/isolamento & purificação , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Recombinação Genética , Eslováquia , Carga Viral , Proteínas Virais/genética
6.
Electron. j. biotechnol ; 30: 1-5, nov. 2017. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1021034

RESUMO

Background: The enzymes utilized in the process of beer production are generally sensitive to higher temperatures. About 60% of them are deactivated in drying the malt that limits the utilization of starting material in the fermentation process. Gene transfer from thermophilic bacteria is a promising tool for producing barley grains harboring thermotolerant enzymes. Results: Gene for α-amylase from hydrothermal Thermococcus, optimally active at 75­85°C and pH between 5.0 and 5.5, was adapted in silico to barley codon usage. The corresponding sequence was put under control of the endosperm-specific promoter 1Dx5 and after synthesis and cloning transferred into barley by biolistics. In addition to model cultivar Golden Promise we transformed three Slovak barley cultivars Pribina, Levan and Nitran, and transgenic plants were obtained. Expression of the ~50 kDa active recombinant enzyme in grains of cvs. Pribina and Nitran resulted in retaining up to 9.39% of enzyme activity upon heating to 75°C, which is more than 4 times higher compared to non-transgenic controls. In the model cv. Golden Promise the grain α-amylase activity upon heating was above 9% either, however, the effects of the introduced enzyme were less pronounced (only 1.22 fold difference compared with non-transgenic barley). Conclusions: Expression of the synthetic gene in barley enhanced the residual α-amylase activity in grains at high temperatures.


Assuntos
Sementes/enzimologia , Hordeum/enzimologia , Thermococcus/metabolismo , alfa-Amilases/metabolismo , Sementes/genética , Sementes/microbiologia , Transformação Genética , Hordeum/genética , Hordeum/microbiologia , Cerveja , Estabilidade Enzimática , Plantas Geneticamente Modificadas/enzimologia , Clonagem Molecular , Técnicas de Transferência de Genes , alfa-Amilases/genética , Fermentação , Termotolerância , Temperatura Alta , Concentração de Íons de Hidrogênio
7.
Mol Plant Pathol ; 15(3): 226-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24102673

RESUMO

TAXONOMIC RELATIONSHIPS: Plum pox virus (PPV) is a member of the genus Potyvirus in the family Potyviridae. PPV diversity is structured into at least eight monophyletic strains. GEOGRAPHICAL DISTRIBUTION: First discovered in Bulgaria, PPV is nowadays present in most of continental Europe (with an endemic status in many central and southern European countries) and has progressively spread to many countries on other continents. GENOMIC STRUCTURE: Typical of potyviruses, the PPV genome is a positive-sense single-stranded RNA (ssRNA), with a protein linked to its 5' end and a 3'-terminal poly A tail. It is encapsidated by a single type of capsid protein (CP) in flexuous rod particles and is translated into a large polyprotein which is proteolytically processed in at least 10 final products: P1, HCPro, P3, 6K1, CI, 6K2, VPg, NIapro, NIb and CP. In addition, P3N-PIPO is predicted to be produced by a translational frameshift. PATHOGENICITY FEATURES: PPV causes sharka, the most damaging viral disease of stone fruit trees. It also infects wild and ornamental Prunus trees and has a large experimental host range in herbaceous species. PPV spreads over long distances by uncontrolled movement of plant material, and many species of aphid transmit the virus locally in a nonpersistent manner. SOURCES OF RESISTANCE: A few natural sources of resistance to PPV have been found so far in Prunus species, which are being used in classical breeding programmes. Different genetic engineering approaches are being used to generate resistance to PPV, and a transgenic plum, 'HoneySweet', transformed with the viral CP gene, has demonstrated high resistance to PPV in field tests in several countries and has obtained regulatory approval in the USA.


Assuntos
Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/fisiologia , Prunus/virologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Variação Genética , Especificidade de Hospedeiro , Modelos Biológicos , Dados de Sequência Molecular , Doenças das Plantas/imunologia , Doenças das Plantas/estatística & dados numéricos , Vírus Eruptivo da Ameixa/genética , Vírus Eruptivo da Ameixa/isolamento & purificação , Vírus Eruptivo da Ameixa/patogenicidade , Prunus/imunologia
8.
Phytopathology ; 103(9): 972-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23581702

RESUMO

Plum pox virus (PPV) is the causal agent of sharka, the most detrimental virus disease of stone fruit trees worldwide. PPV isolates have been assigned into seven distinct strains, of which PPV-C regroups the genetically distinct isolates detected in several European countries on cherry hosts. Here, three complete and several partial genomic sequences of PPV isolates from sour cherry trees in the Volga River basin of Russia have been determined. The comparison of complete genome sequences has shown that the nucleotide identity values with other PPV isolates reached only 77.5 to 83.5%. Phylogenetic analyses clearly assigned the RU-17sc, RU-18sc, and RU-30sc isolates from cherry to a distinct cluster, most closely related to PPV-C and, to a lesser extent, PPV-W. Based on their natural infection of sour cherry trees and genomic characterization, the PPV isolates reported here represent a new strain of PPV, for which the name PPV-CR (Cherry Russia) is proposed. The unique amino acids conserved among PPV-CR and PPV-C cherry-infecting isolates (75 in total) are mostly distributed within the central part of P1, NIa, and the N terminus of the coat protein (CP), making them potential candidates for genetic determinants of the ability to infect cherry species or of adaptation to these hosts. The variability observed within 14 PPV-CR isolates analyzed in this study (0 to 2.6% nucleotide divergence in partial CP sequences) and the identification of these isolates in different localities and cultivation conditions suggest the efficient establishment and competitiveness of the PPV-CR in the environment. A specific primer pair has been developed, allowing the specific reverse-transcription polymerase chain reaction detection of PPV-CR isolates.


Assuntos
Afídeos/virologia , Variação Genética , Genoma Viral/genética , Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/isolamento & purificação , Prunus/virologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas do Capsídeo/genética , Primers do DNA/genética , DNA Complementar/química , DNA Complementar/genética , Mutação , Filogenia , Vírus Eruptivo da Ameixa/classificação , Vírus Eruptivo da Ameixa/genética , Vírus Eruptivo da Ameixa/imunologia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Federação Russa , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Nicotiana/virologia , Proteínas Virais/genética
9.
Virus Genes ; 44(3): 505-12, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22367316

RESUMO

Three major strains of the Plum pox virus (PPV) are the most important in Europe: PPV-D, PPV-M, and PPV-Rec. By combining the genomes of two different strains of PPV (PPV-D with PPV-Rec; PPV-D with PPV-M), 20 inter-strain chimeric infectious clones (CICPPV) were constructed. Biological properties of CICPPV were tested by inoculating them on different herbaceous host species susceptible to PPV. Four of the seven species tested, exhibited visible symptoms. In Nicotiana benthamiana all CICPPV induced systemic mosaic and leaf malformation. Pisum sativum showed a broad range of symptom severity (systemic chlorotic and necrotic lesions) but neither qualitative nor quantitative aspects of symptomatology were related to a single PPV genome locus. Nicotiana occidentalis and Nicandra physaloides proved to be suitable for symptom-based differentiation. Depending on the virus strain/chimera, N. occidentalis showed two types of symptoms: mild systemic chlorotic spots or local necrotic lesions/systemic vein necroses. N. physaloides reacted to the PPV infection either symptomless or by local necrotic lesions. Our results demonstrated that the P1/HC-pro region of the PPV genome appears to be the determinant of the symptom manifestation in these host plants. In silico analysis mapped it to the 3'-proximal part of the P1 gene.


Assuntos
Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/genética , Vírus Eruptivo da Ameixa/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Genoma Viral/genética , Pisum sativum/virologia , Folhas de Planta/virologia , Recombinação Genética , Solanaceae/virologia
10.
Plant Dis ; 93(11): 1209-1213, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30754579

RESUMO

The tritimovirus Wheat streak mosaic virus (WSMV) is widespread throughout the world and represents a severe threat to cereal crop production. To increase knowledge of genetic diversity of WSMV in Europe, until now scarce, capsid protein (CP) sequences of several Czech, French, Italian, Slovak, and Turkish isolates have been determined. A multiple alignment of CP nucleotide sequences using available WSMV sequences revealed only limited sequence variation among 3 previously sequenced European isolates and the 14 European isolates sequenced in this study. Moreover, these isolates were characterized by an identical 3-nucleotide deletion, resulting in the lack of the Gly2761 codon within the CP region of the polyprotein. The results indicate that this monophyletic group of isolates (designated as WSMV-ΔE) is common and widely dispersed throughout the European continent. The close relationship of WSMV-ΔE isolates implies a single common ancestor and, presumably, subsequent dispersal throughout Europe from a single focus. We developed two simple assays for specific and accurate detection of WSMV-ΔE isolates. First, a conserved ClaI restriction site in the core CP gene sequence unique to WSMV-ΔE isolates was used for restriction fragment length polymorphism analysis of amplified polymerase chain reaction (PCR) products. Second, the conserved and specific codon gap in WSMV-ΔE sequences was used as a target to design specific primers functional in one-step reverse-transcription PCR detection of WSMV-ΔE isolates.

11.
J Gen Virol ; 85(Pt 9): 2671-2681, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15302961

RESUMO

Natural recombinant Plum pox virus (PPV) isolates were detected in Albania, Bulgaria, Czech Republic, Germany, Hungary and Slovakia. Despite different geographical origins and dates of isolation, all the recombinant isolates were closely related at the molecular level and shared the same recombination breakpoint as well as a typical signature in their N-terminal coat protein sequence, suggesting a common origin. Biological assays with four recombinant isolates demonstrated their capacity to be aphid-transmitted to various Prunus hosts. One of these isolates had a threonine-to-isoleucine mutation in the conserved PTK motif of its HC-Pro and showed a drastically decreased, although not abolished, aphid transmissibility. The complete genome sequence of one of the recombinant isolates, BOR-3, was determined, as well as some partial sequences in the HC-Pro and P3 genes for additional natural recombinant isolates. Analysis of the phylogenetic relationships between the recombinant isolates and other sequenced PPV isolates confirmed that the recombinant isolates form a phylogenetically homogeneous lineage. In addition, this analysis revealed an ancient recombination event between the PPV-D and M subgroups, with a recombination breakpoint located in the P3 gene. Taken together, these results indicate that recombinant isolates represent an evolutionarily successful, homogeneous group of isolates with a common history and unique founding recombination event. The name PPV-Rec is proposed for this coherent ensemble of isolates.


Assuntos
Genoma Viral , Vírus Eruptivo da Ameixa/genética , Prunus/virologia , Animais , Afídeos , Proteínas do Capsídeo/genética , Europa (Continente) , Genes Virais , Insetos Vetores , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Folhas de Planta , Vírus Eruptivo da Ameixa/classificação , Vírus Eruptivo da Ameixa/patogenicidade , Recombinação Genética , Homologia de Sequência , Nicotiana , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA