Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Lab Invest ; 103(12): 100265, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858679

RESUMO

Prostate cancer prognostication largely relies on visual assessment of a few thinly sectioned biopsy specimens under a microscope to assign a Gleason grade group (GG). Unfortunately, the assigned GG is not always associated with a patient's outcome in part because of the limited sampling of spatially heterogeneous tumors achieved by 2-dimensional histopathology. In this study, open-top light-sheet microscopy was used to obtain 3-dimensional pathology data sets that were assessed by 4 human readers. Intrabiopsy variability was assessed by asking readers to perform Gleason grading of 5 different levels per biopsy for a total of 20 core needle biopsies (ie, 100 total images). Intrabiopsy variability (Cohen κ) was calculated as the worst pairwise agreement in GG between individual levels within each biopsy and found to be 0.34, 0.34, 0.38, and 0.43 for the 4 pathologists. These preliminary results reveal that even within a 1-mm-diameter needle core, GG based on 2-dimensional images can vary dramatically depending on the location within a biopsy being analyzed. We believe that morphologic assessment of whole biopsies in 3 dimension has the potential to enable more reliable and consistent tumor grading.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Biópsia , Neoplasias da Próstata/patologia , Biópsia com Agulha de Grande Calibre , Gradação de Tumores
2.
J Pathol ; 260(4): 390-401, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37232213

RESUMO

Prostate cancer treatment decisions rely heavily on subjective visual interpretation [assigning Gleason patterns or International Society of Urological Pathology (ISUP) grade groups] of limited numbers of two-dimensional (2D) histology sections. Under this paradigm, interobserver variance is high, with ISUP grades not correlating well with outcome for individual patients, and this contributes to the over- and undertreatment of patients. Recent studies have demonstrated improved prognostication of prostate cancer outcomes based on computational analyses of glands and nuclei within 2D whole slide images. Our group has also shown that the computational analysis of three-dimensional (3D) glandular features, extracted from 3D pathology datasets of whole intact biopsies, can allow for improved recurrence prediction compared to corresponding 2D features. Here we seek to expand on these prior studies by exploring the prognostic value of 3D shape-based nuclear features in prostate cancer (e.g. nuclear size, sphericity). 3D pathology datasets were generated using open-top light-sheet (OTLS) microscopy of 102 cancer-containing biopsies extracted ex vivo from the prostatectomy specimens of 46 patients. A deep learning-based workflow was developed for 3D nuclear segmentation within the glandular epithelium versus stromal regions of the biopsies. 3D shape-based nuclear features were extracted, and a nested cross-validation scheme was used to train a supervised machine classifier based on 5-year biochemical recurrence (BCR) outcomes. Nuclear features of the glandular epithelium were found to be more prognostic than stromal cell nuclear features (area under the ROC curve [AUC] = 0.72 versus 0.63). 3D shape-based nuclear features of the glandular epithelium were also more strongly associated with the risk of BCR than analogous 2D features (AUC = 0.72 versus 0.62). The results of this preliminary investigation suggest that 3D shape-based nuclear features are associated with prostate cancer aggressiveness and could be of value for the development of decision-support tools. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Gradação de Tumores , Próstata/patologia , Neoplasias da Próstata/patologia , Prognóstico , Prostatectomia/métodos , Medição de Risco
3.
IEEE Trans Biomed Eng ; 70(7): 2160-2171, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37021859

RESUMO

OBJECTIVE: For tumor resections, margin status typically correlates with patient survival but positive margin rates are generally high (up to 45% for head and neck cancer). Frozen section analysis (FSA) is often used to intraoperatively assess the margins of excised tissue, but suffers from severe under-sampling of the actual margin surface, inferior image quality, slow turnaround, and tissue destructiveness. METHODS: Here, we have developed an imaging workflow to generate en face histologic images of freshly excised surgical margin surfaces based on open-top light-sheet (OTLS) microscopy. Key innovations include (1) the ability to generate false-colored H&E-mimicking images of tissue surfaces stained for < 1 min with a single fluorophore, (2) rapid OTLS surface imaging at a rate of 15 min/cm2 followed by real-time post-processing of datasets within RAM at a rate of 5 min/cm2, and (3) rapid digital surface extraction to account for topological irregularities at the tissue surface. RESULTS: In addition to the performance metrics listed above, we show that the image quality generated by our rapid surface-histology method approaches that of gold-standard archival histology. CONCLUSION: OTLS microscopy has the feasibility to provide intraoperative guidance of surgical oncology procedures. SIGNIFICANCE: The reported methods can potentially improve tumor-resection procedures, thereby improving patient outcomes and quality of life.


Assuntos
Margens de Excisão , Microscopia , Humanos , Qualidade de Vida , Técnicas Histológicas
4.
Nat Methods ; 19(5): 613-619, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545715

RESUMO

Light-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a flexible system that can address imaging applications with varied requirements in terms of resolution, sample size, tissue-clearing protocol, and transparent sample-holder material. Here, we present a 'hybrid' system that combines a unique non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet (OTLS) architecture for versatile multi-scale volumetric imaging. We demonstrate efficient screening and targeted sub-micrometer imaging of sparse axons within an intact, cleared mouse brain. The same system enables high-throughput automated imaging of multiple specimens, as spotlighted by a quantitative multi-scale analysis of brain metastases. Compared with existing academic and commercial light-sheet microscopy systems, our hybrid OTLS system provides a unique combination of versatility and performance necessary to satisfy the diverse requirements of a growing number of cleared-tissue imaging applications.


Assuntos
Microscopia , Animais , Camundongos , Microscopia/métodos
5.
J Biomed Opt ; 27(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35315258

RESUMO

SIGNIFICANCE: For breast cancer patients, the extent of regional lymph node (LN) metastasis influences the decision to remove all axillary LNs. Metastases are currently identified and classified with visual analysis of a few thin tissue sections with conventional histology that may underrepresent the extent of metastases. AIM: We sought to enable nondestructive three-dimensional (3D) pathology of human axillary LNs and to develop a practical workflow for LN staging with our method. We also sought to evaluate whether 3D pathology improves staging accuracy in comparison to two-dimensional (2D) histology. APPROACH: We developed a method to fluorescently stain and optically clear LN specimens for comprehensive imaging with multiresolution open-top light-sheet microscopy. We present an efficient imaging and data-processing workflow for rapid evaluation of H&E-like datasets in 3D, with low-resolution screening to identify potential metastases followed by high-resolution localized imaging to confirm malignancy. RESULTS: We simulate LN staging with 3D and 2D pathology datasets from 10 metastatic nodes, showing that 2D pathology consistently underestimates metastasis size, including instances in which 3D pathology would lead to upstaging of the metastasis with important implications on clinical treatment. CONCLUSIONS: Our 3D pathology method may improve clinical management for breast cancer patients by improving staging accuracy of LN metastases.


Assuntos
Neoplasias da Mama , Axila/patologia , Neoplasias da Mama/patologia , Feminino , Humanos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Metástase Linfática/diagnóstico por imagem , Estadiamento de Neoplasias
6.
Cancer Res ; 82(2): 334-345, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34853071

RESUMO

Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning-based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. SIGNIFICANCE: An end-to-end pipeline for deep learning-assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/epidemiologia , Idoso , Biópsia com Agulha de Grande Calibre , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Medição de Risco , Coloração e Rotulagem
7.
Nat Biomed Eng ; 5(3): 203-218, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589781

RESUMO

High-throughput methods for slide-free three-dimensional (3D) pathological analyses of whole biopsies and surgical specimens offer the promise of modernizing traditional histology workflows and delivering improvements in diagnostic performance. Advanced optical methods now enable the interrogation of orders of magnitude more tissue than previously possible, where volumetric imaging allows for enhanced quantitative analyses of cell distributions and tissue structures that are prognostic and predictive. Non-destructive imaging processes can simplify laboratory workflows, potentially reducing costs, and can ensure that samples are available for subsequent molecular assays. However, the large size of the feature-rich datasets that they generate poses challenges for data management and computer-aided analysis. In this Perspective, we provide an overview of the imaging technologies that enable 3D pathology, and the computational tools-machine learning, in particular-for image processing and interpretation. We also discuss the integration of various other diagnostic modalities with 3D pathology, along with the challenges and opportunities for clinical adoption and regulatory approval.


Assuntos
Biópsia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Humanos , Aprendizado de Máquina , Prognóstico
8.
J Biomed Opt ; 25(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33325186

RESUMO

SIGNIFICANCE: Processing and diagnosing a set of 12 prostate biopsies using conventional histology methods typically take at least one day. A rapid and accurate process performed while the patient is still on-site could significantly improve the patient's quality of life. AIM: We develop and assess the feasibility of a one-hour-to-diagnosis (1Hr2Dx) method for processing and providing a preliminary diagnosis of a set of 12 prostate biopsies. APPROACH: We developed a fluorescence staining, optical clearing, and 3D open-top light-sheet microscopy workflow to enable 12 prostate needle core biopsies to be processed and diagnosed within an hour of receipt. We analyzed 44 biopsies by the 1Hr2Dx method, which does not consume tissue. The biopsies were then processed for routine, slide-based 2D histology. Three pathologists independently evaluated the 3D 1Hr2Dx and 2D slide-based datasets in a blinded, randomized fashion. Turnaround times were recorded, and the accuracy of our method was compared with gold-standard slide-based histology. RESULTS: The average turnaround time for tissue processing, imaging, and diagnosis was 44.5 min. The sensitivity and specificity of 1Hr2Dx in diagnosing cancer were both >90 % . CONCLUSIONS: The 1Hr2Dx method has the potential to improve patient care by providing an accurate preliminary diagnosis within an hour of biopsy.


Assuntos
Próstata , Neoplasias da Próstata , Biópsia , Biópsia por Agulha , Humanos , Masculino , Microscopia , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Qualidade de Vida
9.
Biomed Opt Express ; 10(3): 1257-1272, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30891344

RESUMO

Open-top light-sheet microscopy is a technique that can potentially enable rapid ex vivo inspection of large tissue surfaces and volumes. Here, we have optimized an open-top light-sheet (OTLS) microscope and image-processing workflow for the comprehensive examination of surgical margin surfaces, and have also developed a novel fluorescent analog of H&E staining that is robust for staining fresh unfixed tissues. Our tissue-staining method can be achieved within 2.5 minutes followed by OTLS microscopy of lumpectomy surfaces at a rate of up to 1.5 cm2/minute. An image atlas is presented to show that OTLS image quality surpasses that of intraoperative frozen sectioning and can approximate that of gold-standard H&E histology of formalin-fixed paraffin-embedded (FFPE) tissues. Qualitative evidence indicates that these intraoperative methods do not interfere with downstream post-operative H&E histology and immunohistochemistry. These results should facilitate the translation of OTLS microscopy for intraoperative guidance of lumpectomy and other surgical oncology procedures.

10.
Arch Pathol Lab Med ; 143(9): 1069-1075, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30892067

RESUMO

CONTEXT.­: Ex vivo microscopy encompasses a range of techniques to examine fresh or fixed tissue with microscopic resolution, eliminating the need to embed the tissue in paraffin or produce a glass slide. One such technique is light-sheet microscopy, which enables rapid 3D imaging. Our pathology-engineering collaboration has resulted in an open-top light-sheet (OTLS) microscope that is specifically tailored to the needs of pathology practice. OBJECTIVE.­: To present an image atlas of OTLS images of prostate core needle biopsies. DESIGN.­: Core needle biopsies (N = 9) were obtained from fresh radical prostatectomy specimens. Each biopsy was fixed in formalin, dehydrated in ethanol, stained with TO-PRO3 and eosin, optically cleared, and imaged using OTLS microscopy. The biopsies were then processed, paraffin embedded, and sectioned. Hematoxylin-eosin and immunohistochemical staining for cytokeratin 5 and cytokeratin 8 was performed. RESULTS.­: Benign and neoplastic histologic structures showed high fidelity between OTLS and traditional light microscopy. OTLS microscopy had no discernible effect on hematoxylin-eosin or immunohistochemical staining in this pilot study. The 3D histology information obtained using OTLS microscopy enabled new structural insights, including the observation of cribriform and well-formed gland morphologies within the same contiguous glandular structures, as well as the continuity of poorly formed glands with well-formed glands. CONCLUSIONS.­: Three-dimensional OTLS microscopy images have a similar appearance to traditional hematoxylin-eosin histology images, with the added benefit of useful 3D structural information. Further studies are needed to continue to document the OTLS appearance of a wide range of tissues and to better understand 3D histologic structures.


Assuntos
Biópsia com Agulha de Grande Calibre , Imageamento Tridimensional/métodos , Microscopia/métodos , Próstata/patologia , Corantes , Amarelo de Eosina-(YS) , Hematoxilina , Humanos , Imuno-Histoquímica , Masculino , Microscopia/instrumentação , Prostatectomia , Neoplasias da Próstata/patologia , Coloração e Rotulagem/métodos
11.
J Biomed Opt ; 24(2): 1-11, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30737911

RESUMO

Intraoperative assessment of breast surgical margins will be of value for reducing the rate of re-excision surgeries for lumpectomy patients. While frozen-section histology is used for intraoperative guidance of certain cancers, it provides limited sampling of the margin surface (typically <1 % of the margin) and is inferior to gold-standard histology, especially for fatty tissues that do not freeze well, such as breast specimens. Microscopy with ultraviolet surface excitation (MUSE) is a nondestructive superficial optical-sectioning technique that has the potential to enable rapid, high-resolution examination of excised margin surfaces. Here, a MUSE system is developed with fully automated sample translation to image fresh tissue surfaces over large areas and at multiple levels of defocus, at a rate of ∼5 min / cm2. Surface extraction is used to improve the comprehensiveness of surface imaging, and 3-D deconvolution is used to improve resolution and contrast. In addition, an improved fluorescent analog of conventional H&E staining is developed to label fresh tissues within ∼5 min for MUSE imaging. We compare the image quality of our MUSE system with both frozen-section and conventional H&E histology, demonstrating the feasibility to provide microscopic visualization of breast margin surfaces at speeds that are relevant for intraoperative use.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Margens de Excisão , Microscopia Ultravioleta/métodos , Imagem Óptica/métodos , Animais , Mama/cirurgia , Neoplasias da Mama/cirurgia , Carcinoma/diagnóstico por imagem , Carcinoma/cirurgia , Feminino , Secções Congeladas , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Rim/diagnóstico por imagem , Mastectomia Segmentar , Camundongos , Microscopia de Fluorescência/métodos , Microscopia Ultravioleta/instrumentação , Imagem Óptica/instrumentação , Propriedades de Superfície
12.
Nanotheranostics ; 1(4): 369-388, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29071200

RESUMO

In recent decades, various classes of nanoparticles have been developed for optical imaging of cancers. Many of these nanoparticles are designed to specifically target tumor sites, and specific cancer biomarkers, to facilitate the visualization of tumors. However, one challenge for accurate detection of tumors is that the molecular profiles of most cancers vary greatly between patients as well as spatially and temporally within a single tumor mass. To overcome this challenge, certain nanoparticles and imaging systems have been developed to enable multiplexed imaging of large panels of cancer biomarkers. Multiplexed molecular imaging can potentially enable sensitive tumor detection, precise delineation of tumors during interventional procedures, and the prediction/monitoring of therapy response. In this review, we summarize recent advances in systems that have been developed for the imaging of optical nanoparticles that can be heavily multiplexed, which include surface-enhanced Raman-scattering nanoparticles (SERS NPs) and quantum dots (QDs). In addition to surveying the optical properties of these various types of nanoparticles, and the most-popular multiplexed imaging approaches that have been employed, representative preclinical and clinical imaging studies are also highlighted.

13.
Cancer Res ; 77(16): 4506-4516, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28615226

RESUMO

Intraoperative identification of carcinoma at lumpectomy margins would enable reduced re-excision rates, which are currently as high as 20% to 50%. Although imaging of disease-associated biomarkers can identify malignancies with high specificity, multiplexed imaging of such biomarkers is necessary to detect molecularly heterogeneous carcinomas with high sensitivity. We have developed a Raman-encoded molecular imaging (REMI) technique in which targeted nanoparticles are topically applied on excised tissues to enable rapid visualization of a multiplexed panel of cell surface biomarkers at surgical margin surfaces. A first-ever clinical study was performed in which 57 fresh specimens were imaged with REMI to simultaneously quantify the expression of four biomarkers HER2, ER, EGFR, and CD44. Combined detection of these biomarkers enabled REMI to achieve 89.3% sensitivity and 92.1% specificity for the detection of breast carcinoma. These results highlight the sensitivity and specificity of REMI to detect biomarkers in freshly resected tissue, which has the potential to reduce the rate of re-excision procedures in cancer patients. Cancer Res; 77(16); 4506-16. ©2017 AACR.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Mastectomia Segmentar/instrumentação , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Nanopartículas/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Mastectomia Segmentar/métodos
14.
J Biophotonics ; 10(5): 645-656, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27507213

RESUMO

This study's goal was to determine how Cherenkov radiation emission observed in radiotherapy is affected by predictable factors expected in patient imaging. Factors such as tissue optical properties, radiation beam properties, thickness of tissues, entrance/exit geometry, curved surface effects, curvature and imaging angles were investigated through Monte Carlo simulations. The largest physical cause of variation of the correlation ratio between of Cherenkov emission and dose was the entrance/exit geometry (˜50%). The largest human tissue effect was from different optical properties (˜45%). Beyond these, clinical beam energy varies the correlation ratio significantly (˜20% for X-ray beams), followed by curved surfaces (˜15% for X-ray beams and ˜8% for electron beams), and finally, the effect of field size (˜5% for X-ray beams). Other investigated factors which caused variations less than 5% were tissue thicknesses and source to surface distance. The effect of non-Lambertian emission was negligible for imaging angles smaller than 60 degrees. The spectrum of Cherenkov emission tends to blue-shift along the curved surface. A simple normalization approach based on the reflectance image was experimentally validated by imaging a range of tissue phantoms, as a first order correction for different tissue optical properties.


Assuntos
Radiometria/métodos , Radioterapia , Humanos , Método de Monte Carlo , Fenômenos Ópticos , Imagens de Fantasmas
15.
Nat Biomed Eng ; 1(7)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29750130

RESUMO

For the 1.7 million patients per year in the U.S. who receive a new cancer diagnosis, treatment decisions are largely made after a histopathology exam. Unfortunately, the gold standard of slide-based microscopic pathology suffers from high inter-observer variability and limited prognostic value due to sampling limitations and the inability to visualize tissue structures and molecular targets in their native 3D context. Here, we show that an open-top light-sheet microscope optimized for non-destructive slide-free pathology of clinical specimens enables the rapid imaging of intact tissues at high resolution over large 2D and 3D fields of view, with the same level of detail as traditional pathology. We demonstrate the utility of this technology for various applications: wide-area surface microscopy to triage surgical specimens (with ~200 µm surface irregularities), rapid intraoperative assessment of tumour-margin surfaces (12.5 sec/cm2), and volumetric assessment of optically cleared core-needle biopsies (1 mm in diameter, 2 cm in length). Light-sheet microscopy can be a versatile tool for both rapid surface microscopy and deep volumetric microscopy of human specimens.

16.
Artigo em Inglês | MEDLINE | ID: mdl-27524875

RESUMO

The imaging of dysregulated cell-surface receptors (or biomarkers) is a potential means of identifying the presence of cancer with high sensitivity and specificity. However, due to heterogeneities in the expression of protein biomarkers in tumors, molecular imaging technologies should ideally be capable of visualizing a multiplexed panel of cancer biomarkers. Recently, surface-enhanced Raman-scattering (SERS) nanoparticles (NPs) have attracted wide interest due to their potential for sensitive and multiplexed biomarker detection. In this review, we focus on the most recent advances in tumor imaging using SERS-coded NPs. A brief introduction of the structure and optical properties of SERS NPs is provided, followed by a detailed discussion of key imaging issues such as the administration of NPs in tissue (topical versus systemic), the optical configuration and imaging approach of Raman imaging systems, spectral demultiplexing methods for quantifying NP concentrations, and the disambiguation of specific vs. nonspecific sources of contrast through ratiometric imaging of targeted and untargeted (control) NP pairs. Finally, future challenges and directions are briefly outlined.

17.
Med Phys ; 43(2): 993-1002, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26843259

RESUMO

PURPOSE: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). METHODS: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. RESULTS: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R(2) = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial angles, to only 9.8% with the angles optimized. A linear relationship between angle spread and SSD was observed, ranging from 35° at 441 cm, to 39° at 300 cm, with no significant variation in percent-depth dose at midline (R(2) = 0.998). For patient studies, factors influencing in vivo correlation between Cherenkov intensity and measured surface dose are still being investigated. CONCLUSIONS: Cherenkov intensity correlates to relative dose measured at depth of maximum dose in a uniform, flat phantom. Imaging of phantoms can thus be used to analyze and optimize TSET treatment geometry more extensively and rapidly than thermoluminescent dosimeters or ionization chambers. This work suggests that there could be an expanded role for Cherenkov imaging as a tool to efficiently improve treatment protocols and as a potential verification tool for routine monitoring of unique patient treatments.


Assuntos
Elétrons/uso terapêutico , Imagem Óptica , Radioterapia Guiada por Imagem/métodos , Pele/efeitos da radiação , Humanos , Aceleradores de Partículas , Radiometria , Radioterapia Guiada por Imagem/instrumentação , Fatores de Tempo
18.
Phys Med Biol ; 60(17): 6701-18, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26270125

RESUMO

Cherenkov radiation has recently emerged as an interesting phenomenon for a number of applications in the biomedical sciences. Its unique properties, including broadband emission spectrum, spectral weight in the ultraviolet and blue wavebands, and local generation of light within a given tissue, have made it an attractive new source of light within tissue for molecular imaging and phototherapy applications. While several studies have investigated the total Cherenkov light yield from radionuclides in units of [photons/decay], further consideration of the light propagation in tissue is necessary to fully consider the utility of this signal in vivo. Therefore, to help further guide the development of this novel field, quantitative estimates of the light fluence rate of Cherenkov radiation from both radionuclides and radiotherapy beams in a biological tissue are presented for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.01-1 nW cm(-2) per MBq g(-1) for radionuclides, and 1-100 µW cm(-2) per Gy s(-1) for external radiotherapy beams, dependent on the given waveband, optical properties, and radiation source. For phototherapy applications, the total light fluence was found to be on the order of nJ cm(-2) for radionuclides, and mJ cm(-2) for radiotherapy beams. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at such exceedingly low fluence values. The results of this study are publicly available for distribution online at www.dartmouth.edu/optmed/.


Assuntos
Algoritmos , Imagem Molecular/métodos , Fótons , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos
19.
Med Phys ; 42(2): 994-1004, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25652512

RESUMO

PURPOSE: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. METHODS: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. RESULTS: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary cost than the EM-ICCD. CONCLUSIONS: The ICCD with an intensifier better optimized for red wavelengths was found to provide the best potential for real-time display (at least 8.6 fps) of radiation dose on the skin during treatment at a resolution of 1024 × 1024.


Assuntos
Imagem Óptica/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Humanos , Processamento de Imagem Assistida por Computador , Semicondutores , Fatores de Tempo
20.
Phys Med Biol ; 60(1): L1-14, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25504315

RESUMO

To investigate Cherenkov imaging (Cherenkoscopy) based patient positioning and movement tracking during external beam radiation therapy (EBRT). In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the LINAC pulse output, during different fractions of the treatment. Patients were positioned with the aid of the AlignRT system in the beginning of each treatment session. Inter-fraction setup variation was studied by rigid image registrations between images acquired at individual treatments to the average image from all imaged treatment fractions. The amplitude of respiratory motion was calculated from the registration of each frame of Cherenkov images to the reference. A Canny edge detection algorithm was utilized to highlight the beam field edges and biological features provided by major blood vessels apparent in the images. Real-time Cherenkoscopy can monitor the treatment delivery, patient motion and alignment of the beam edge to the treatment region simultaneously. For all the imaged fractions, the patient positioning discrepancies were within our clinical tolerances (3 mm in shifts and 3 degree in pitch angle rotation), with 4.6% exceeding 3 mm but still within 4 mm in shifts. The average discrepancy of repetitive patient positioning was 1.22 mm in linear shift and 0.34 degrees in rotational pitch, consistent with the accuracy reported by the AlignRT system. The edge detection algorithm enhanced features such as field edges and blood vessels. Patient positioning discrepancies and respiratory motion retrieved from rigid image registration were consistent with the edge enhanced images. Besides positioning discrepancies caused by globally inaccurate setups, edge enhanced blood vessels indicate the existence of deformations within the treatment region, especially for large patients. Real-time Cherenkoscopy imaging during EBRT is a novel imaging tool that can be used for treatment monitoring, patient positioning and motion tracking.


Assuntos
Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Mastectomia Segmentar , Posicionamento do Paciente , Radioterapia Guiada por Imagem/instrumentação , Radioterapia/métodos , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Movimento , Aceleradores de Partículas , Radiografia , Radioterapia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA